Advertisement

Journal of Materials Science

, Volume 41, Issue 19, pp 6221–6227 | Cite as

Importance of oxygen atmosphere to recover the ZnO-based varistors properties

  • M. A. Ramírez
  • A. Z. Simões
  • P. R. Bueno
  • M. A. Márquez
  • M. O. Orlandi
  • J. A. Varela
Article

Abstract

A methodology to recover the non-ohmic properties of ZnO based varistors after degradation with long and short duration pulses was proposed in this work. The basic idea consists in submitt the degraded ceramics at different temperatures and oxygen flows. Thermal treatment at 900 °C for 2 h with oxygen flow of 15 l/h allowed to obtain better non-linear coefficient (α = 52.5) compared to the standard sample. Rietveld refinement showed that with the thermal treatment, the oxygen species and the β-Bi2O3 phase, lost in the degradation process, are recovered in the grain boundary.

Keywords

Bi2O3 Rietveld Refinement Oxygen Flow Bismuth Oxide Enrich Oxygen 

Notes

Acknowlegments

Mastery in Engineering of Materials and Process, DIME, Faculty of Mines and Academic Direction of the National University of Colombia-Sede Medellín by the financial support of this research and the facilities offered by CMDMC-LIEC at the Chemistry Institute-UNESP and Department of Chemistry-UFSCar. The authors thank A.A Cavalheiro for his help with Rietveld’s analyze.

References

  1. 1.
    Leite ER, Varela JA, Longo E (1992) J Mater Sci 72:5325CrossRefGoogle Scholar
  2. 2.
    Gupta TK, Carlson WG (1985) J Mater Sci 20:3847Google Scholar
  3. 3.
    Eda K, Iga A, Matsuoka M (1980) J Appl Phys 51:2678CrossRefGoogle Scholar
  4. 4.
    Sato K, Takada Y (1982) J Appl Phys 53:8819CrossRefGoogle Scholar
  5. 5.
    Eda K (1984) J Appl Phys 56:2948CrossRefGoogle Scholar
  6. 6.
    Ramírez MA, Bueno PR, Ribeiro WC, Varela JA, Bonett DA, Villa JM, Márquez MA, Rojo CR (2005) J Mat Sci 40:5591CrossRefGoogle Scholar
  7. 7.
    Lengauer M, Rubesa DR (2000) J Europ Cer Soc 20:1017CrossRefGoogle Scholar
  8. 8.
    Stucki F, Greuter F (1990) Appl Phys Lett 57:446CrossRefGoogle Scholar
  9. 9.
    Santos MR, Bueno PR, Longo E, Varela JA (2001) J Eur Ceram Soc 21:161CrossRefGoogle Scholar
  10. 10.
    Bueno PR, Leite ER, Oliveira MM, Orlandi MO, Longo E (2001) Appl Phys Lett 79:48 - 50CrossRefGoogle Scholar
  11. 11.
    Olsson E, Dunlop GL, Osterlund RJ (1989) J Appl Phys 66:5072CrossRefGoogle Scholar
  12. 12.
    Bueno PR, Santos MR, Leite ER, Longo E, Bisquert J, García G, Santiago F (2000) J Appl Phys 88:6545CrossRefGoogle Scholar
  13. 13.
    Larson AC, Von Dreele RB (2001) Los Alamos National Laboratory. Los Alamos, EUA. Copyright, 1985–2000, The Regents of the University of CaliforniaGoogle Scholar
  14. 14.
    Standard Methods for Estimating the Average Grain Size of Metals, ASTM (1967) 446–460Google Scholar
  15. 15.
    Alim MA (1989) J Am Ceram Soc 72:28CrossRefGoogle Scholar
  16. 16.
    Mukae K, Tsuda K, Nagasawa I (1979) J Appl Phys 50:4475CrossRefGoogle Scholar
  17. 17.
    So S-J, Park C-B (2001) J Kor Phys Soc (38) 416Google Scholar
  18. 18.
    Sonder E, Austin MM, Kinser DL (1983) J Appl Phys 54:3566CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • M. A. Ramírez
    • 1
    • 2
  • A. Z. Simões
    • 2
  • P. R. Bueno
    • 2
  • M. A. Márquez
    • 1
  • M. O. Orlandi
    • 3
  • J. A. Varela
    • 2
  1. 1.Faculty of MinesNational University of ColombiaMedellínColombia
  2. 2.Department of Physics and ChemistryUNESPAraraquaraBrazil
  3. 3.Department of ChemistryUFSCarSão CarlosBrazil

Personalised recommendations