Advertisement

Journal of Materials Science

, Volume 42, Issue 12, pp 4624–4629 | Cite as

Effects of calcination conditions on phase and morphology evolution of lead zirconate powders synthesized by solid-state reaction

  • W. Chaisan
  • O. Khamman
  • R. Yimnirun
  • S. AnantaEmail author
Article

Abstract

Lead zirconate (PbZrO3) powder has been synthesized by a solid-state reaction via a rapid vibro-milling technique. The effects of calcination temperature, dwell time and heating/cooling rates on phase formation, morphology, particle size and chemical composition of the powders have been investigated by TG-DTA, XRD, SEM and EDX techniques. The results indicated that at calcination temperature lower than 800 °C minor phases of unreacted PbO and ZrO2 were found to form together with the perovskite PbZrO3 phase. However, single-phase PbZrO3 powders were successfully obtained at calcination conditions of 800 °C for 3 h or 850 °C for 1 h, with heating/cooling rates of 20 °C/min. Higher temperatures and longer dwell times clearly favored the particle growth and formation of large and hard agglomerates.

Keywords

Calcination Dwell Time Calcination Temperature Barium Titanate Lead Zirconate 

Notes

Acknowledgements

We thank the Thailand Research Fund (TRF), the Comission on Higher Education (CHE), Graduate School, Faculty of Science, and Center of Excellence in Functional Nanomaterials, Chiang Mai University for all supports.

References

  1. 1.
    Jaffe B, Cook WJ, Jaffe H (1971) Piezoelectric ceramics. Academic Press, LondonGoogle Scholar
  2. 2.
    Jona F, Shirane G (1993) Ferroelectric crystals. Dover Publications, New YorkGoogle Scholar
  3. 3.
    Sawaguchi E, Maniwa H,Hoshino S (1951) Phys Rev 83:1078CrossRefGoogle Scholar
  4. 4.
    Shirane G, Sawaguchi E, Takagi Y (1951) Phys Rev 84:476CrossRefGoogle Scholar
  5. 5.
    Sawaguchi E, Kittaka K (1952) J Phys Soc Jpn 7:336CrossRefGoogle Scholar
  6. 6.
    Tennery VJ (1966) J Am Ceram Soc 49:483CrossRefGoogle Scholar
  7. 7.
    Scott BA, Burns G (1972) J Am Ceram Soc 55:331CrossRefGoogle Scholar
  8. 8.
    Shirane G, Hoshino S (1954) Acta Crystallogr 7:203CrossRefGoogle Scholar
  9. 9.
    Pokharel BP, Pandey D (1999) J Appl Phys 86:3327CrossRefGoogle Scholar
  10. 10.
    Bongarn T, Rujijanagul G, Milne SJ (2005) Mater Lett 59:1200CrossRefGoogle Scholar
  11. 11.
    Whatmore RW (1976) Ph.D. Thesis, Genville and Cauis College, CambridgeGoogle Scholar
  12. 12.
    Singh K (1989) Ferroelectrics 94:433CrossRefGoogle Scholar
  13. 13.
    Haertling GH (1999) J Am Ceram Soc 82:797CrossRefGoogle Scholar
  14. 14.
    Moulson AJ, Herbert JM (2003) Electroceramics, 2nd edn. Wiley, New YorkGoogle Scholar
  15. 15.
    Uchino K (1998) Piezoelectrics and ultrasonic applications. Kluwer, DeventerGoogle Scholar
  16. 16.
    Kakegawa K, Mohri J, Takahashi T, Yamamura H, Shirasaki S (1977) Solid State Commun 24:769CrossRefGoogle Scholar
  17. 17.
    Kingon AI, Clark JB (1983) J Am Ceram Soc 66:253CrossRefGoogle Scholar
  18. 18.
    Matsuo Y, Sasaki H (1965) J Am Ceram Soc 48:289CrossRefGoogle Scholar
  19. 19.
    Babushkin O, Lindback T, Lue JC, Leblais JYM (1996) J Eur Ceram Soc 16:1293CrossRefGoogle Scholar
  20. 20.
    Hanky DL, Biggers JV (1951) J Am Ceram Soc 12:172Google Scholar
  21. 21.
    Garg A, Agrawal DC (1999) Mat Sci Eng B 56:46CrossRefGoogle Scholar
  22. 22.
    Tipakontitikul R, Ananta S (2004) Mater Lett 58:449CrossRefGoogle Scholar
  23. 23.
    Reaney IM, Glazounov A, Chu F, Bell A, Setter N (1997) Brit Ceram Trans 96:217Google Scholar
  24. 24.
    Oren EE, Taspinar E, Tas AC (1997) J Am Ceram Soc 80:2714CrossRefGoogle Scholar
  25. 25.
    Ibrahim DM, Hennicke HW (1981) Trans J Br Ceram Soc 80:18Google Scholar
  26. 26.
    Deshpande AS, Khollam YB, Patil AJ, Deshpande SB, Potdar HS, Date SK (2001) Mater Lett 51:161CrossRefGoogle Scholar
  27. 27.
    Rao YS, Sunandana CS (1992) J Mater Sci Lett 11:595CrossRefGoogle Scholar
  28. 28.
    Choi JY, Kim CH, Kim DK (1998) J Am Ceram Soc 81:1353CrossRefGoogle Scholar
  29. 29.
    Fang J, Wang J, Ng SC, Gan LM, Quek CH, Chew CH (1998) Mater Lett 36:179CrossRefGoogle Scholar
  30. 30.
    Puchmark C, Rujijanagul G, Jiansirisomboon S, Tunkasiri T (2004) Ferroelectric Lett 31:1Google Scholar
  31. 31.
    Fang J, Wang J, Ng SC, Gan LM, Chew CH (1998) Ceram Inter 24:507CrossRefGoogle Scholar
  32. 32.
    Lanagan MT, Kim JH, Jang S, Newnham RE (1988) J Am Ceram Soc 71:311CrossRefGoogle Scholar
  33. 33.
    Ananta S, Thomas NW (1999) J Eur Ceram Soc 19:155CrossRefGoogle Scholar
  34. 34.
    Klug H, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. Wiley, New YorkGoogle Scholar
  35. 35.
    Aoyama T, Kurata N, Hirota K, Yamaguchi O (1995) J Am Ceram Soc 78:3163CrossRefGoogle Scholar
  36. 36.
    Fushimi S, Ikeda T (1967) J Am Ceram Soc 50:129CrossRefGoogle Scholar
  37. 37.
    Lee WE, Rainforth WM (1994) Ceramic microstructures: Property control by processing. Chapman & Hall, LondonGoogle Scholar
  38. 38.
    Deyneka TG, Vouk EA, Ishchuk VM, Ramakaeva RF, Volkova GK, Konstantinova TE (2004) Funct Mater 11:44Google Scholar
  39. 39.
    Udomporn A, Ananta S (2004) Mater Lett 58:1154CrossRefGoogle Scholar
  40. 40.
    JCPDS-ICDD Card No. 77–1971 (2002) International Centre for Diffraction Data, Newtown Square, PAGoogle Scholar
  41. 41.
    JCPDS-ICDD Card No. 37–1484 (2002) International Centre for Diffraction Data, Newtown Square, PAGoogle Scholar
  42. 42.
    JCPDS-ICDD Card No. 35–739 (2002) International Centre for Diffraction Data, Newtown Square, PA, 2002Google Scholar
  43. 43.
    Tani T, Li JF, Viehland D, Payne DA (1994) J Appl Phys 75:3017CrossRefGoogle Scholar
  44. 44.
    Ananta S, Brydson R, Thomas NW (2000) J Eur Ceram Soc 20:2315CrossRefGoogle Scholar
  45. 45.
    Ryu J, Choi JJ, Kim HE (2001) J Am Ceram Soc 84:902CrossRefGoogle Scholar
  46. 46.
    Baumgartner CE (1988) J Am Ceram Soc 71:C-350CrossRefGoogle Scholar
  47. 47.
    Udomporn A, Pengpat K, Ananta S (2004) J Eur Ceram Soc 24:185CrossRefGoogle Scholar
  48. 48.
    Ananta S (2004) Mater Lett 58:2530CrossRefGoogle Scholar
  49. 49.
    Kim HK (1993) Thesis MS, Seoul National University, Seoul, KoreaGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • W. Chaisan
    • 1
  • O. Khamman
    • 1
  • R. Yimnirun
    • 1
  • S. Ananta
    • 1
    Email author
  1. 1.Department of Physics, Faculty of ScienceChiang Mai UniversityChiang MaiThailand

Personalised recommendations