Advertisement

Journal of Materials Science

, Volume 41, Issue 23, pp 7725–7729 | Cite as

Grain boundary excess free volume—direct thermodynamic measurement

  • L. S. Shvindlerman
  • G. Gottstein
  • V. A. Ivanov
  • D. A. Molodov
  • D. Kolesnikov
  • W. Łojkowski
Article

Abstract

The grain boundary excess free volume (BFV) along with the surface tension determines the major thermodynamic properties of grain boundaries. The BFV controls to a large extent the evolution and stability of polycrystals. Unfortunately, our knowledge about the BFV is completely restricted to data generated by computer simulations, which, in turn, are strictly limited to grain boundaries in the vicinity of special misorientations. We developed a special technique that makes it possible to measure the BFV for practically any grain boundary and provides a way of estimating the BFV for grain boundaries of different classes with high accuracy. A knowledge of the BFV is especially important for fine grained and nanocrystalline systems where it opens new possibilities to design the physical properties and microstructure of such polycrystals.

Keywords

Contact Angle Hydrostatic Pressure Electrical Discharge Machine Screw Dislocation Boundary System 

Notes

Acknowledgements

Financial assistance from the Deutsche Forschungsgemeinschaft (Grant MO 848/7-1) is gratefully acknowledged. The cooperation was supported by the Deutsche Forschungsgemeinschaft (DFG Grant 436 RUS 113/714/0-1(R)) and the Russian Foundation of Fundamental Research (Grant DFG-RRFI 05-02-04017).

References

  1. 1.
    Estrin Y, Gottstein G, Shvindlerman LS (1999) Scripta Mater 41:385CrossRefGoogle Scholar
  2. 2.
    Estrin Y, Gottstein G, Rabkin E, Shvindlerman LS (2000) Scripta Mater 43:141CrossRefGoogle Scholar
  3. 3.
    Estrin Y, Gottstein G, Shvindlerman LS (1999) Acta Mater 47:3541CrossRefGoogle Scholar
  4. 4.
    Estrin Y, Gottstein G, Shvindlerman LS (1999) Scripta mater 41:415CrossRefGoogle Scholar
  5. 5.
    Knizhnik GS (1981) Poverhnost: Fizika, Khimia, Mehanika 5:50 [In Russian]Google Scholar
  6. 6.
    Wolf D (1989) Scripta Metall 23:1913CrossRefGoogle Scholar
  7. 7.
    Wolf D (1990) Acta Metall 38:781CrossRefGoogle Scholar
  8. 8.
    Frost HJ, Ashby MF, Spaepen F (1980) Scripta Metall 14:1051CrossRefGoogle Scholar
  9. 9.
    Stremel MA, Markovich AL (1997) Poverhnost 1:85 [In Russian]Google Scholar
  10. 10.
    Zhang H, Srolovitz DJ. To be publishedGoogle Scholar
  11. 11.
    Meiser H, Gleitter H (1980) Scripta Metall 14:1980CrossRefGoogle Scholar
  12. 12.
    Merkle KL, Csencsits R, Rynes KL, Withrow JP, Stadelmann PA (1998) Journal of Microscopy 190:204CrossRefGoogle Scholar
  13. 13.
    Gottstein G, Shvindlerman LS (1999) Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications. CRC Press, Baton RougeCrossRefGoogle Scholar
  14. 14.
    Fradkov V, Shvindlerman LS (1979) Fiz Metall Metalloved 48:297Google Scholar
  15. 15.
    Read WT, Shockley W (1950) Phys Rev 28:275CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • L. S. Shvindlerman
    • 1
  • G. Gottstein
    • 2
  • V. A. Ivanov
    • 2
  • D. A. Molodov
    • 2
  • D. Kolesnikov
    • 3
  • W. Łojkowski
    • 3
  1. 1.Institute of Solid State Physics, Russian Academy of SciencesChernogolovka, Moscow DistrictRussia
  2. 2.Institut für Metallkunde und Metallphysik, RWTH AachenAachenGermany
  3. 3.Institute of High Pressure Physics, Polish Academy of SciencesWarsawPoland

Personalised recommendations