Advertisement

Journal of Materials Science

, Volume 41, Issue 24, pp 8152–8159 | Cite as

Electrophoretic deposition of polyetheretherketone (PEEK) and PEEK/Bioglass® coatings on NiTi shape memory alloy wires

  • A. R. Boccaccini
  • C. Peters
  • J. A. RoetherEmail author
  • D. Eifler
  • S. K. Misra
  • E. J. Minay
Article

Abstract

Polyetheretherketone (PEEK) and PEEK/Bioglass® coatings were produced on shape memory alloy (NiTi, Nitinol®) wires using electrophoretic deposition (EPD). Best results were achieved with suspensions of PEEK powders in ethanol in the range (1–6 wt%), using a deposition time of 5 minutes and applied voltage of 20 Volts. EPD using these parameters led to high quality PEEK coatings with a homogeneous microstructure along the wire length and a uniform thickness of up to 15 μm without development of cracks or the presence of large voids. Suspensions of PEEK powders in ethanol with addition of Bioglass® particles (0.5–2 wt%) (size < 5 μm) were used to produce PEEK/Bioglass® coatings. Sintering was carried out as a post EPD process in order to densify the coatings and to improve the adhesion of the coatings to the substrate. The sintering temperature was 340 °C, sintering time 20 min and heating rate 300 °C/h. Sintering led to uniform and dense PEEK and PEEK/Bioglass® coatings without any cracks. The bioactive behaviour of PEEK/Bioglass® composite coatings was investigated by immersion in acellular simulated body fluid (SBF) for up to two weeks. As expected, hydroxyapatite crystals formed on the surface of the coated wires after 1 week in SBF, confirming the bioactive character of the coatings. The results have demonstrated for the first time that EPD is a very convenient method to obtain homogeneous and uniform bioactive PEEK and PEEK/Bioglass® coatings on Nitinol® wires for biomedical applications.

Keywords

Shape Memory Alloy Composite Coating Simulated Body Fluid Bioactive Glass Electrophoretic Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wintermantel E, Ha S-W (1998) Biokompatible Werkstoffe und Bausweisen, Springer-Verlag, BerlinGoogle Scholar
  2. 2.
    Hench LL (1998) J Am Ceram Soc 81(7):1705CrossRefGoogle Scholar
  3. 3.
    Moritz N, Vedel E, Ylänen H, Jokinen M, Hupa M, Yli-Urpo A (2004) J Mater Sci: Mater Med 15:787CrossRefGoogle Scholar
  4. 4.
    Silver FH (1994) Biomaterials, medical devices and tissue engineering: An integrated approach, Chapman & Hall, LondonGoogle Scholar
  5. 5.
    Petrovic L, Pohle D, Munstedt H, Rechtenwald T, Schlegel KA, Rupprecht S (2006) J Biomed Sci 13:41CrossRefGoogle Scholar
  6. 6.
    Ha S-W, Hauert R, Ernst K-H, Wintermantel E (1997) Surface Coating Technol 96:293CrossRefGoogle Scholar
  7. 7.
    Noiset O, Schneider YJ, MarchandBrynaert J (1997) J Polym Sci Part A. Polym Chem 35:3779CrossRefGoogle Scholar
  8. 8.
    Roether JA, Boccaccini AR, Hench LL, Maquet V, Gautier S, Jérôme R (2002) Biomaterials 23:3871CrossRefGoogle Scholar
  9. 9.
    Lopez-Esteban S, Saiz E, Fujino S, Oku T, Suganuma K, Tomsia AP (2003) J Eur Ceram Soc 23: 2921CrossRefGoogle Scholar
  10. 10.
    Castleman LS, Motzkin SM, Alicandri FP et al (1976) J Biomed Mater Res 10(5):695CrossRefGoogle Scholar
  11. 11.
    El Feninant F, Laroche G, Fiset M, Mantovani D (2002) Adv Eng Mater 4(3):91CrossRefGoogle Scholar
  12. 12.
    Miyazaki S (1999) In: Otsuka K, Wayman CM (eds) Shape memory materials. Cambridge University Press, Cambridge, pp 267–281Google Scholar
  13. 13.
    Ryhanen J, Niemi E, Serlo W et al (1997) J Biomed Mater Res 35(4):451CrossRefGoogle Scholar
  14. 14.
    Sarkar P, Nicholson PS (1996) J Am Ceram Soc 79(8):1987CrossRefGoogle Scholar
  15. 15.
    Boccaccini AR, Zhitomirsky I (2002) Curr Opin Solid State Mater Sci 6: 251CrossRefGoogle Scholar
  16. 16.
    Wang C, Ma J, Cheng W, Zhang R (2002) Mater Lett 57(1):99CrossRefGoogle Scholar
  17. 17.
    Zhitomirsky I (2000) Mater Lett 42:262CrossRefGoogle Scholar
  18. 18.
    Wang R, Hu YX (2003) J Biomed Mater Res Part A 67A(1): 270CrossRefGoogle Scholar
  19. 19.
    Krause D, Thomas B, Leinenbach C, Eifler D, Minay EJ and Boccaccini AR (2006) Surface Coating Technol 200:4835CrossRefGoogle Scholar
  20. 20.
    Wang C, Ma J, Cheng W (2003) Surface Coating Technol 173:271CrossRefGoogle Scholar
  21. 21.
    Memory Metalle GmbH (2005) Selected properties of NiTi. http://www.memory-metalle.de/html/01_start/index_outer_frame.htm/ (accessed November 4, 2005)Google Scholar
  22. 22.
    Victrex: Passion, Innovation, Performance (2005) Victrex® PEEK™ in the industrial market. http://www.victrex.com/uk/table.asp?id=200 (accessed November 23, 2005)Google Scholar
  23. 23.
    Chen QZ, Thompson ID, Boccaccini AR (2006) Biomaterials 27: 2414CrossRefGoogle Scholar
  24. 24.
    Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, Nakamura T (1992) J Am Ceram Soc 75(8):2094CrossRefGoogle Scholar
  25. 25.
    Cerruti M, Greenspan D, Powers K (2005) Biomaterials 26:1665CrossRefGoogle Scholar
  26. 26.
    Wang M (2003) Biomaterials 24(13):2133CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • A. R. Boccaccini
    • 1
  • C. Peters
    • 2
  • J. A. Roether
    • 1
    Email author
  • D. Eifler
    • 2
  • S. K. Misra
    • 1
  • E. J. Minay
    • 1
  1. 1.Department of MaterialsImperial College LondonLondonUK
  2. 2.Institute of Materials Science and EngineeringUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations