Advertisement

Journal of Materials Science

, Volume 42, Issue 14, pp 5742–5751 | Cite as

Blending and oxygen permeation properties of the blown films of blends of modified polyamide and ethylene vinyl alcohol copolymer with varying vinyl alcohol contents

  • Jen-Taut YehEmail author
  • Heng-Yi Chen
Article

Abstract

The oxygen permeation and blending properties of the MPAEVOH blends of modified polyamide (MPA) and ethylene vinyl alcohol copolymer (EVOH) with varying vinyl alcohol contents were systematically investigated in this study. The oxygen permeation rates of EVOH film specimens are dramatically slower than that of the PE specimen and reduce significantly as their vinyl alcohol contents increase. After blending EVOH in MPA resin, the oxygen permeation rates of each MPAEVOH series film specimens reduce significantly as their EVOH and/or vinyl alcohol contents increase, respectively. At some optimum compositions, the oxygen permeation rates of the MPAEVOH film specimens are even lower than that of the pure EVOH film specimen with a vinyl alcohol content of 52 wt%. On the other hand, the average radius (Rf), volume (Vf) of the free-volume-cavities and fractional free-volume (Fv) values of each MPAEVOH series specimens reduce significantly as their EVOH and/or vinyl alcohol contents increase. These interesting barrier and free-volume properties of the EVOH and MPAEVOH specimens with varying vinyl alcohol contents were investigated in terms of the intermolecular interaction and/or free-volume properties in the amorphous phases of the EVOH and MPAEVOH specimens obtained in this study.

Keywords

HDPE Oxygen Permeation Film Specimen Terminal Amine Group Ethylene Vinyl Alcohol Copolymer 

References

  1. 1.
    Iwanamy T, Hiral Y (1983) Tappi J 66:85Google Scholar
  2. 2.
    Tanaka Y (1989) Jpn Food Sci 7:49Google Scholar
  3. 3.
    Ozeki Y, Kim J (1996) In: Salamone JC (ed) Polymeric materials encyclopedia, vol 3. CRC, New York, p 2284Google Scholar
  4. 4.
    Finch CA (1992) In: Polyvinyl alcohol. John Wiley and Sons, New York, p 258Google Scholar
  5. 5.
    Tsai BC, Wachtel JA (1989) In: Koros WJ (ed) Barrier polymers and structures, ACS symposium series 423. American Chemical Society, Washington, DC, p 192Google Scholar
  6. 6.
    Brown WE (1992) In: Plastics in food packaging. Marcel Dekker, New York, p 301Google Scholar
  7. 7.
    Odorzynski TW (1982) U.S. Patent no. 4347332Google Scholar
  8. 8.
    Pottsville AD (1984) U.S. Patent no. 4427825Google Scholar
  9. 9.
    Subramanian PM (1983) U.S. Patent no. 4410482Google Scholar
  10. 10.
    Subramanian PM (1984) U.S. Patent no. 4444817Google Scholar
  11. 11.
    Yeh JT, Jou WS, Su YS (1999) J Appl Polym Sci 9:2158CrossRefGoogle Scholar
  12. 12.
    Yeh JT, Wang LH, Chen KN, Jou WS (2001) J Mater Sci 36:1891CrossRefGoogle Scholar
  13. 13.
    Yeh JT, Shyu WD, Chen CH (2001) J Appl Polym Sci 80:1122Google Scholar
  14. 14.
    Subramanian PM (1985) Polym Eng Sci 25:483CrossRefGoogle Scholar
  15. 15.
    Subramanian PM (1987) Polym Eng Sci 27:663CrossRefGoogle Scholar
  16. 16.
    Diluccio RC (1983) U.S. Patent no. 4416942Google Scholar
  17. 17.
    Yeh JT, Fan-Chiang CC (1995) Cho MF Polym Bull 35:371CrossRefGoogle Scholar
  18. 18.
    Yeh JT, Fan-Chiang CC, Yang SS (1997) J Appl Polym Sci 64:1531CrossRefGoogle Scholar
  19. 19.
    Yeh JT, Fan-Chiang CC (1997) J Appl Polym Sci 66:2517CrossRefGoogle Scholar
  20. 20.
    Yeh JT, Fan-Chiang CC (1996) J Polym Res 3:211CrossRefGoogle Scholar
  21. 21.
    Yeh JT, Jyan CF (1998) Polym Eng Sci 38:1482CrossRefGoogle Scholar
  22. 22.
    Yeh JT, Jyan CF, Chou S (1998) SPE Antec 3:3567Google Scholar
  23. 23.
    Yeh JT, Yang SS, Jyan CF, Chou S (1999) Polym Eng Sci 39:1952CrossRefGoogle Scholar
  24. 24.
    Yeh JT, Chao CC, Chen CH (2000) J Appl Polym Sci 76:1997CrossRefGoogle Scholar
  25. 25.
    Yeh JT, Shih WS, Huang SS (2002) Macromol Mater Eng 287:23CrossRefGoogle Scholar
  26. 26.
    Yeh JT, Chang SS, Yao HT, Chen KN, Jou WS (2000) J Mater Sci 35:1CrossRefGoogle Scholar
  27. 27.
    Yeh JT, Huang SS, Yao WH (2002) Macromol Mater Eng 287:532CrossRefGoogle Scholar
  28. 28.
    Yeh JT, Yao WH, Du QG, Chen CC (2005) J Polym Sci Part B Polym Phys 43:511CrossRefGoogle Scholar
  29. 29.
    Yeh JT, Huang SS, Chen HY (2005) Polym Eng Sci 45:25CrossRefGoogle Scholar
  30. 30.
    Yeh JT, Huang SS, Chen HY (2005) J Appl Polym Sci 97:1333CrossRefGoogle Scholar
  31. 31.
    Yeh JT, Chen HY, Tsai FC (in press) J Appl Polym SciGoogle Scholar
  32. 32.
    Nakanishi H, Jean YC, Smith EG, Sandreczki TC (1989) J Polym Sci Polym Phys Ed 27:1419CrossRefGoogle Scholar
  33. 33.
    Nakanishi H, Wang SJ, Jean YC (1988) In: Sharma SC (ed) Positron annihilation in fluids. World Scientific, Singapore, p 753Google Scholar
  34. 34.
    Deng Q, Sundar CS, Jean YC (1992) J Phys Chem 96:492CrossRefGoogle Scholar
  35. 35.
    Wang YY, Nakanishi H, Jean YC, Sandreczki TC (1990) J Polym Sci Polym Phys Ed 28:1431CrossRefGoogle Scholar
  36. 36.
    Skrovanek DJ, Howe SE, Painter PC, Coleman MM (1985) Macromolecules 18:1676CrossRefGoogle Scholar
  37. 37.
    Coleman MM, Yang X, Zhang H, Painter PC (1993) J Macromol Sci Phys B32:295CrossRefGoogle Scholar
  38. 38.
    Moskala EJ, Varnell DF, Coleman MM (1985) Polymer 26:228CrossRefGoogle Scholar
  39. 39.
    Person WB, Zerbi G (1982) In Vibrational intensities in infrared and Ramam spectroscopy. Elsevier, New York, p 159Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Faculty of Chemistry and Material ScienceHuBei UniversityWuhanChina
  2. 2.Department and Graduate School of Polymer EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan
  3. 3.Department of Textile Science Nanya Institute of Technology JhongliTaiwan

Personalised recommendations