Sorption and diffusion of aromatic solvents through linear low density polyethylene–ethylene vinyl acetate blend membranes
- 184 Downloads
- 13 Citations
Abstract
An investigation has been made for understanding the transport behaviour of organic solvents through linear low-density polyethylene (LLDPE)/ethylene vinyl acetate (EVA) blend membranes with special reference to the effects of blend ratio, concentration of cross-linking agent, penetrant size and temperature. Attempts have been made to relate the transport parameter with the morphology of the blend. The various transport parameters such as diffusion coefficient (D), permeation coefficient (P) and sorption coefficients (S) were evaluated at different diffusion conditions. The results were compared with theoretical predictions and found that the diffusion process follows anomolous type behaviour. The blends show dispersed/matrix and co-continuous phase morphologies depending on the composition. Dynamic vulcanization leads to fine and uniform distribution of the dispersed domains with a stable morphology. Among the blends E70 sample shows the maximum solvent uptake and E30 the minimum. The solvent uptake of blend varies with concentration of cross-linking agent. Molecular size of the solvent is a decisive factor in the solvent uptake. The rate of sorption and maximum solvent uptake increase with increase of temperature. Irrespective of the solvents used, the maximum solvent uptake increases with increase of temperature. The observed sorptivity, diffusivity and permeability are associated with cross-link densities of different samples. The D, S and P values increase with increase of EVA content in the blend.
Keywords
LLDPE Sorption Behaviour Ethylene Vinyl Acetate Ethylene Vinyl Acetate Solvent UptakeReferences
- 1.Hopfenberg HB, Paul DR (1978) In: Paul DR, Newman S (eds) Polymer blends, Chapter 10. Academic Press, New YorkGoogle Scholar
- 2.Paul DR (1984) J Membr Sci 18:75CrossRefGoogle Scholar
- 3.Chiou JS, Paul DR (1986) J Appl Polym Sci 32:2897, 4793CrossRefGoogle Scholar
- 4.Odani H, Uchicura M, Ogino Y, Kurata M (1983) J Membr Sci 15:193CrossRefGoogle Scholar
- 5.Landois-Gavza J, Hotchkiss JH (1987) Food and packaging interactions. ACS, Symposium Series 365, Am Chem Soc, Washington, DC, 53Google Scholar
- 6.Naylor TD (1989) In: Booth C, Price C (eds) Comprehensive polymer science, vol 2. Pergamon Press, New York, pp 643Google Scholar
- 7.Kulkarni PV, Rajar SB, Antich P, Aminabhavi TM, Aralaguppi MI (1990) J Macromol Sci Rev Macromol Chem Phys C 30:441CrossRefGoogle Scholar
- 8.Kawai H, Soen T, Fujimoto F, Shiroguchi T (1974) Japanese Patent No. 100,780 (1973) Chem. Abstar, 80:10946gGoogle Scholar
- 9.Fang Y, Sourirajan S, Matsuura T (1992) J Appl Polym Sci 44:1959CrossRefGoogle Scholar
- 10.Sourirajan S (1970) Reverse osmosis. Academic Press, New YorkGoogle Scholar
- 11.David MO, Nguyen QT, Neel J (1992) J Membr Sci 73:129CrossRefGoogle Scholar
- 12.Coll H, Searless CG (1988) Polymer 29:1266CrossRefGoogle Scholar
- 13.Berens AR, Hopfenberg HB (1978) Polymer 19:489CrossRefGoogle Scholar
- 14.Smith MT, Peppas NA (1985) Polymer 26:569CrossRefGoogle Scholar
- 15.Errede LA (1986) Macromolecules 19:654CrossRefGoogle Scholar
- 16.Rennar N, Opperman W (1992) Colloid Polym Sci 270:527CrossRefGoogle Scholar
- 17.Fedors RF (1979) Polymer 20:1087CrossRefGoogle Scholar
- 18.Zielinski JM, Duda JL (1992) J Polym Sci Part B: Polym Phys 30:1081CrossRefGoogle Scholar
- 19.Harogoppad SB, Aminabhavi TM (1991) J Appl Polym Sci 42:2329CrossRefGoogle Scholar
- 20.Barrer RM, Skirrow G (1948) J Polym Sci 3:549CrossRefGoogle Scholar
- 21.Harogoppad SB, Aminabhavi TM (1991) Polymer 32(5):870CrossRefGoogle Scholar
- 22.Unnikrishnan G, Thomas S (1994) Polymer 35(25):5504CrossRefGoogle Scholar
- 23.Mathew AP, Packirisamy S, Kumaran MG, Thomas S (1995) Polymer 36:4935CrossRefGoogle Scholar
- 24.Asha EM, Thomas S (1996) J Macromol Sci Phys B 35(2):229CrossRefGoogle Scholar
- 25.Hopfenberg HB, Paul DR (1976) In: Paul DR (ed) Polymer blends, I. Academic Press, New YorkGoogle Scholar
- 26.Kolarik J, Gueskens G (1997) Polym Networks Blends 7(1):13Google Scholar
- 27.Aminabhavi TM, Phayde HTS (1995) J Appl Polym Sci 55:1335CrossRefGoogle Scholar
- 28.Cates DM, White HJ Jr (1956) J Polym Sci 20:181CrossRefGoogle Scholar
- 29.Cates DM, White HJ Jr (1956) J Polym Sci 20:155CrossRefGoogle Scholar
- 30.Cates DM, White HJ Jr (1956) J Polym Sci 20:125CrossRefGoogle Scholar
- 31.Jacques CHM, Hopfenberg HB, Stannett V (1973) Polym Eng Sci 13:81CrossRefGoogle Scholar
- 32.Jacques CHM, Hopfenberg HB (1974) Polym Eng Sci 14:441CrossRefGoogle Scholar
- 33.Jacques CHM, Hopfenberg HB (1974) Polym Eng Sci 14:449CrossRefGoogle Scholar
- 34.Hopfenberg HB, Stannet VT, Folk GM (1975) Polym Eng Sci 15:261CrossRefGoogle Scholar
- 35.Varghese H, Bhagawan SS, Thomas S (1999) J Polym Sci Part B Polym Phys 37:1815CrossRefGoogle Scholar
- 36.George S, Varghese KT, Thomas S (2000) Polymer 41:579CrossRefGoogle Scholar
- 37.Marais S, Bureau E, Gouanve F, Ben Salem E, Hirata Y, Andrio A, Cabot C, Atmani H (2004) Polymer Testing 23(4):475CrossRefGoogle Scholar
- 38.Cabasso I, Jagur-Gordziski J, Vofsi D (1974) J Appl Polym Sci 18:2117CrossRefGoogle Scholar
- 39.Aminabhavi TM, Phayde HTS (1995) Polymer 36(5):1033CrossRefGoogle Scholar
- 40.Aminabhavi TM, Phayde HTS (1995) J Appl Polym Sci 55:1335CrossRefGoogle Scholar
- 41.Aminabhavi TM, Phayde HTS, Orgego JD, Vergnand JM (1996) Polymer 37(9):1677CrossRefGoogle Scholar
- 42.Aminabhavi TM, Phayde HTS (1995) J Appl Polym Sci 57:1419CrossRefGoogle Scholar
- 43.Mesrobian RB, Ammondron CJ, U.S. Patent, No. 3,093, 255, June 11 (1963)Google Scholar
- 44.Pavlovska FP, Raka L (2004) J Polym Sci Part B: Polym Phys 42(2):267CrossRefGoogle Scholar
- 45.George SC, Ninan KN, Geuskens G, Thomas S (2004) J Appl Polym Sci 91(6):3756CrossRefGoogle Scholar
- 46.Kurkuri MD, Aminabhavi TM (2004) J Appl Polym Sci 91(6):4091CrossRefGoogle Scholar
- 47.Yang YR, Huang YM, Chen YL, Wang DN, Liu HL, Hu CP (2004) J Appl Polym Sci 91(5):2984CrossRefGoogle Scholar
- 48.Valente AJM, Burrows HD, Polishchuk AY, Miguel MG, Lobo VMM (2004) Eur Polym J 40(1):109CrossRefGoogle Scholar
- 49.Olkhov AA, Iordanskii AL, Shatalova OV, Krivandin AV, Vlasov SV (2003) Polym Sci Series A 45(12):1197Google Scholar
- 50.Bhattacharya R, Phaniraj TN, Shailaja D (2003) J Membr Sci 227:23CrossRefGoogle Scholar
- 51.Lopezrubio A, Lagaron JM, Gimenez E, Cava D, Hernandezmunoz P, Yamamoto T, Gavara R (2003) Macromolecules 36(25):9467CrossRefGoogle Scholar
- 52.Yang MC, Liu TY (2003) J Membr Sci 226(1–2):119CrossRefGoogle Scholar
- 53.Lu J, Nguyen Q, Zhou LZ, Xu BH, Ping ZH (2003) J Membr Sci 226(1–2):135CrossRefGoogle Scholar
- 54.Colley FR, Collins SA, Richards RW (2003) J Mater Chem 13(11):2765CrossRefGoogle Scholar
- 55.Sujith A, Radhakrishnan CK, Unnikrishnan G, Thomas S (2003) J Appl Polym Sci 90(10):2691CrossRefGoogle Scholar
- 56.An QF, Qian JW, Sun HB, Wang LN, Zhang L, Chen HL (2003) J Membr Sci 222(1–2):113CrossRefGoogle Scholar
- 57.Begum M, Siddaramaiah, Kumar H, Aminabhavi TM (2003) J Appl Polym Sci 90(3):739CrossRefGoogle Scholar
- 58.Anilkumar S, Gedam PH, Kishan Prasad VS, Kumaran MG, Thomas S (1996) J Appl Polym Sci 60:735CrossRefGoogle Scholar
- 59.Moly KA, Radusch HJ, Androsh R, Bhagawan SS, Thomas S (2005) Eur Polym J 41:1410CrossRefGoogle Scholar
- 60.Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, IthacaGoogle Scholar
- 61.Takahashi S (1983) J Appl Polym Sci 28:2847CrossRefGoogle Scholar
- 62.Sperling LH (1986) Introduction to physical polymer science. Wiley, New York, p 107Google Scholar
- 63.Crank JS (1975) The mathematics of diffusion, 2nd edn. Clarendon Press, OxfordGoogle Scholar
- 64.Harogoppad SB, Aminabhavi TM (1991) Macromolecules 24:2598CrossRefGoogle Scholar
- 65.Lucht LM, Peppas NA (1987) J Appl Sci 33:1557CrossRefGoogle Scholar
- 66.George SC, Groeninckx G, Ninan KN, Thomas S (2000) J Polym Sci Part B: Polym Phys 38:2136CrossRefGoogle Scholar
- 67.Southern E, Thomas AG (1967) Trans Farad Soc 63Google Scholar
- 68.Aithal US, Aminabhavi TM (1990) J Chem Educ 67:82CrossRefGoogle Scholar