Journal of Materials Science

, Volume 42, Issue 14, pp 5680–5685 | Cite as

The crystallographic orientation relationship between Al2O3 and MgAl2O4 in the composite material Al2O3/Al–Mg–Si alloy

  • Susumu Ikeno
  • Kenji MatsudaEmail author
  • Toshimasa Matsuki
  • Toshiaki Suzuki
  • Noriaki Endo
  • Tokimasa Kawabata
  • Yasuhiro Uetani


The formation mechanism of spinels on Al2O3 particles in the Al2O3/Al–1.0 mass% Mg2Si alloy composite material has been investigated by transmission electron microscopy (TEM) in order to determine the crystallographic orientation relationship. A thin sample of the Al2O3/Al–Mg–Si alloy composite material was obtained by the FIB method, and the orientation relationship between Al2O3 and MgAl2O4, which was formed on the surface of Al2O3 particles, was discovered by the TEM technique as follows:
$$ \left\{ {111} \right\}_{{\text{MgAl}}_{\text{2}} {\text{O}}_{\text{4}} } //\left\{ {0001} \right\}_{{\text{Al}}_{\text{2}} {\text{O}}_{\text{3}} } $$
$$ \left[ {2\bar 1\bar 1} \right]_{{\text{MgAl}}_{\text{2}} {\text{O}}_{\text{4}} } //\left[ {2\bar 1\bar 10} \right]_{{\text{Al}}_{\text{2}} {\text{O}}_{\text{3}} } ,\left[ {1\bar 10} \right]_{{\text{MgAl}}_{\text{2}} {\text{O}}_{\text{4}} } //\left[ {1\bar 100} \right]_{{\text{Al}}_{\text{2}} {\text{O}}_{\text{3}} } $$

At the interface between the Al2O3 and the matrix the MgAl2O4 (spinel) crystals had facets of {111} planes. Spinels were not grown as thin films, but as particles consisting of {111} planes. They grow towards both the matrix and the Al2O3 particles.


Orientation Relationship MgAl2O4 Al2O3 Particle Transmission Electron Microscopy Sample Transmission Electron Microscopy Technique 



Authors thank to Mr. Hiroaki Matsui, formerly Master’s Student, Graduate School, Toyama University, is with Aishin-Keikinzoku Co. Ltd. (Toyama, 934-8588, Japan) for his experimental support.


  1. 1.
    Ikeno S, Araki M, Matsuda K, Shinagawa F, Uetani Y (1999) J Japan Inst Light Metal 49:244CrossRefGoogle Scholar
  2. 2.
    Ikeno S, Matusda K, Teraki T, Terayama K, Rengakuji S, Shinagawa F, Uetani Y (1997) J Japan Inst Light Metal 47:421CrossRefGoogle Scholar
  3. 3.
    Ikeno S, Matsuda K, Rengakuji S, Uetani Y (2001) J Mater Sci 36:1921CrossRefGoogle Scholar
  4. 4.
    Ikeno S, Matsui H, Matsuda K, Uetani Y (2000) Mater Sci Forum 331–337:1193CrossRefGoogle Scholar
  5. 5.
    Ikeno S, Furuta K, Teraki T, Matsuda K, Anada H, Uetani Y (1996) J Japan Inst Light Metals 46:9CrossRefGoogle Scholar
  6. 6.
    Lee KB, Kim YS, Kwon H (1998) Met Mater Trans A 29A:3087CrossRefGoogle Scholar
  7. 7.
    Lu P, Loehman RE, Ewsuk KG, Fahrenholtz WG (1999) Acta Mater 47:3099CrossRefGoogle Scholar
  8. 8.
    Rao BS, Jayaram V (2001) Acta Mater 49:2373CrossRefGoogle Scholar
  9. 9.
    Daoud A, Reif W (2002) J Mater Process Tech 123:313CrossRefGoogle Scholar
  10. 10.
    Thirsk HR, Whitmore EJ (1940) Trans Faraday Soc 36:565CrossRefGoogle Scholar
  11. 11.
    Li DX, Pirouz P, Heuer AH (1992) Phil Mag A 65:403CrossRefGoogle Scholar
  12. 12.
    Carter CB, Schmalzried H (1985) Phil Mag A 52:207CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Susumu Ikeno
    • 1
  • Kenji Matsuda
    • 1
    Email author
  • Toshimasa Matsuki
    • 2
    • 3
  • Toshiaki Suzuki
    • 4
  • Noriaki Endo
    • 4
  • Tokimasa Kawabata
    • 1
  • Yasuhiro Uetani
    • 5
  1. 1.Faculty of EngineeringUniversity of ToyamaToyamaJapan
  2. 2.Graduate SchoolUniversity of ToyamaToyamaJapan
  3. 3.Aishin Keikinzoku, Co. Ltd.ToyamaJapan
  4. 4.JEOL Ltd.TokyoJapan
  5. 5.Research Institute of TechnologyToyama Prefectural UniversityToyamaJapan

Personalised recommendations