Journal of Materials Science

, Volume 42, Issue 12, pp 4650–4658 | Cite as

Structure of yttria stabilized zirconia beads produced by gel supported precipitation

  • M. WalterEmail author
  • J. Somers
  • A. Fernandez
  • E. D. Specht
  • J. D. Hunn
  • P. Boulet
  • M. A. Denecke
  • C. Göbel


Yttria stabilized zirconia (YSZ) is one of the inert matrix candidates selected for investigation as host matrix for minor actinide (MA) transmutation. The structural properties of (Zr0.84, Y0.16)O1.92 beads prepared by a sol–gel method for MA infiltration, are characterized as calcined (850 °C) and sintered (1,600 °C) beads. The calcined YSZ beads are fine-grained and homogenous over the entire sphere and are surrounded by a uniform outer layer of approximately 30 μm thickness. After sintering at 1,600 °C, the beads are compacted to 51% of their initial volume and exhibit a granular structure. The thermal expansion is nearly linear for the calcined material, but shows a parabolic behavior for the sintered (1,400 °C) beads. In addition, the thermal expansion of calcined material is 20–25% less than after sintering. During heating up to 1,400 °C, two processes can be distinguished. The first occurs between 900 and 1,000 °C and is related to an increase in unit cell order. The second process involves grain-growth of the less crystalline calcined material between 1,100 and 1,300 °C. These results have implications for preparation of YSZ and its use as an inert MA transmutation matix.


Yttria Stabilize Zirconia Minor Actinide Inert Matrix Fuel Sintered Bead Uniform Outer Layer 



We would like to acknowledge the assistance of Y. Martin Alvarez and H. Hein in the preparation of samples, J. Rothe and K. Dardenne for assistance using the INE-beamline, and thank the ANKA Angstroemquelle Karlsruhe for providing beamtime for the EXAFS measurements. X-ray tomography at ORNL was sponsored by the Office of Nuclear Energy, Science and Technology and Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract No. DE-ACO5-00OR22725.


  1. 1.
    Degueldre C, Paratte JM (1999) J Nucl Mater 274:1CrossRefGoogle Scholar
  2. 2.
    Raison PE, Haire RG (2001) Progress Nucl Energy 38:251CrossRefGoogle Scholar
  3. 3.
    Fernández A, Haas D, Konings RJ, Somers J (2002) J Am Ceram Soc 85:694CrossRefGoogle Scholar
  4. 4.
    Scott HG (1975) J Mater Sci 10:1527CrossRefGoogle Scholar
  5. 5.
    Yashima M, Kakihana M, Yoshimura M (1996) Solid State Ionics 86–88:1131CrossRefGoogle Scholar
  6. 6.
    Zhou Y, Lei T-C, Sakuma T (1991) J Am Ceram Soc 74:633CrossRefGoogle Scholar
  7. 7.
    Yashima M, Ohtake K, Arashi H, Kakihana M, Yoshimura M (1993) J Appl Phys 74:7603CrossRefGoogle Scholar
  8. 8.
    Yashima M, Sasaki S, Kakihana M (1994) Acta Cryst B 50:663CrossRefGoogle Scholar
  9. 9.
    Li P, Chen I-W, Penner-Hahn JE (1994) J Am Ceram Soc 77:118CrossRefGoogle Scholar
  10. 10.
    Antonioli G, Lottici PP, Manzini I, Gnappi G, Montenero A, Paloschi F, Parent P (1994) J Non-Cryst Solids 177:179CrossRefGoogle Scholar
  11. 11.
    Wang Y, Lu K, Wang D, Wu Z, Fang Z (1994) J Phys Condens Matter 6:633CrossRefGoogle Scholar
  12. 12.
    Chadwick AV, Mountjoy G, Nield VM, Poplett IJF, Smith ME, Strange JH, Tucker MG (2001) Chem Mater 13:1219CrossRefGoogle Scholar
  13. 13.
    Jiménez-Solís C, Esquivias L, Prieto C (1995) J Alloy Compd 228:188CrossRefGoogle Scholar
  14. 14.
    Qi Z, Shi C, Wei Y, Wang Z, Liu T, Hu T, Zhao Z, Li F (2001) J Phys Condens Matter 13:11503CrossRefGoogle Scholar
  15. 15.
    Rush GE, Chadwick AV, Kosacki I, Anderson HU (2000) J Phys Chem B 104:9597CrossRefGoogle Scholar
  16. 16.
    Kak AC, Slaney M (eds) Principles of computerized tomographic imaging (Society for Industrial and Applied Mathematics, Philadelphia, 2001)Google Scholar
  17. 17.
    Rodriguez-Carvajal J FULLPROF version 3.00 (ILL, November 2004, unpublished)Google Scholar
  18. 18.
    Klug HP, Alexander LE (1974) X-ray procedures. Wiley, New YorkGoogle Scholar
  19. 19.
    Denecke MA, Rothe J, Dardenne K, Blank H, Hormes J (2005) Physika Scripta T115:1001CrossRefGoogle Scholar
  20. 20.
    Ressler T, (1998) J Synchrotron Rad 5:118CrossRefGoogle Scholar
  21. 21.
    Ankudinov AL, Ravel B, Rehr JJ, Conradson SD, (1998) Phys Rev B 58:7565CrossRefGoogle Scholar
  22. 22.
    Terblanche SP, (1989) J Appl Cryst 22:283CrossRefGoogle Scholar
  23. 23.
    Li P, Chen I-W, Penner-Hahn JE, (1993) Phys Rev B 48:10074CrossRefGoogle Scholar
  24. 24.
    Catlow CRA, Chadwick AV, Greaves GN, Moroney LM, (1986) J Am Ceram Soc 69:272CrossRefGoogle Scholar
  25. 25.
    Tuilier MH, Dexpert-Ghys J, Dexpert H, Lagarde P, (1987) J Solid State Chem 69:153CrossRefGoogle Scholar
  26. 26.
    Ishizawa N, Matsushima Y, Hayashi M, Ueki M, (1999) Acta Cryst B 55:726CrossRefGoogle Scholar
  27. 27.
    Veal BW, McKale AG, Paulikas AP, Rothman SJ, Nowicki LJ, (1988) Physica B 150:234CrossRefGoogle Scholar
  28. 28.
    Clark JN, Glasson DR, Jayaweera SAA, (1987) Rev Chim Miner 24:654Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • M. Walter
    • 1
    Email author
  • J. Somers
    • 1
  • A. Fernandez
    • 1
  • E. D. Specht
    • 2
  • J. D. Hunn
    • 2
  • P. Boulet
    • 1
  • M. A. Denecke
    • 3
  • C. Göbel
    • 4
  1. 1.Institute for Transuranium ElementsEuropean Commission, Joint Research CentreKarlsruheGermany
  2. 2.Oak Ridge National LaboratoryOak RidgeUSA
  3. 3.Institut für Nukleare Entsorgung (INE)Forschungszentrum KarlsruheKarlsruheGermany
  4. 4.Max-Planck-Institut für Chemische Physik fester StoffeDresdenGermany

Personalised recommendations