Advertisement

Journal of Materials Science

, Volume 41, Issue 19, pp 6266–6273 | Cite as

Fatigue crack propagation in microcapsule-toughened epoxy

  • E. N. Brown
  • S. R. White
  • N. R. Sottos
Article

Abstract

The addition of liquid-filled urea-formaldehyde (UF) microcapsules to an epoxy matrix leads to significant reduction in fatigue crack growth rate and corresponding increase in fatigue life. Mode-I fatigue crack propagation is measured using a tapered double-cantilever beam (TDCB) specimen for a range of microcapsule concentrations and sizes: 0, 5, 10, and 20% by weight and 50, 180, and 460 μm diameter. Cyclic crack growth in both the neat epoxy and epoxy filled with microcapsules obeys the Paris power law. Above a transition value of the applied stress intensity factor ΔKT, which corresponds to loading conditions where the size of the plastic zone approaches the size of the embedded microcapsules, the Paris law exponent decreases with increasing content of microcapsules, ranging from 9.7 for neat epoxy to approximately 4.5 for concentrations above 10 wt% microcapsules. Improved resistance to fatigue crack propagation, indicated by both the decreased crack growth rates and increased cyclic stress intensity for the onset of unstable fatigue-crack growth, is attributed to toughening mechanisms induced by the embedded microcapsules as well as crack shielding due to the release of fluid as the capsules are ruptured. In addition to increasing the inherent fatigue life of epoxy, embedded microcapsules filled with an appropriate healing agent provide a potential mechanism for self-healing of fatigue damage.

Keywords

Fatigue Crack Crack Growth Rate Fatigue Crack Growth Fatigue Crack Propagation Fatigue Crack Growth Rate 

Notes

Acknowledgments

The authors gratefully acknowledge support from the AFOSR Aerospace and Materials Science Directorate Mechanics and Materials Program (Award No. F49620-00-1-0094), the National Science Foundation (NSF CMS0218863), and Motorola Labs, Motorola Advanced Technology Center, Schaumburg Ill. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the AFOSR or Motorola Labs. The authors would also like to thank Profs. J.S. Moore and P.H. Geubelle of the Autonomic Materials Laboratory of the Beckman Institute of Advanced Science and Technology and Dr. A. Skipor of Motorola Labs for technical support and helpful discussions. Electron microscopy was performed in the Imaging Technology Group, Beckman Institute, of the University of Illinois at Urbana-Champaign, with the assistance of S. Robinson. LAUR-04-2668.

References

  1. 1.
    Cardoso RJ, Shukla A, Bose A (2002) J Mater Sci 37:603CrossRefGoogle Scholar
  2. 2.
    Bagheri R, Pearson RA (1996) J Mater Sci 31:4529CrossRefGoogle Scholar
  3. 3.
    Skibo MD, Hertzberg RW, Manson JA, Kim SL (1977) J Mater Sci 12:531CrossRefGoogle Scholar
  4. 4.
    Paris PC, Gomez MP, Anderson WE (1961) The Trend in Engineering at the University of Washington 13:9Google Scholar
  5. 5.
    Karger-Kocsis J, Friedrich K (1993) Compos Sci Technol 48:263CrossRefGoogle Scholar
  6. 6.
    Nagasawa M, Kinuhata H, Koizuka H, Miyamoto K, Tanaka T, Kishimoto H, Koike T (1995) J Mater Sci 30:1266CrossRefGoogle Scholar
  7. 7.
    McMurray MK, Amagi S (1999) J Mater Sci 34:5927CrossRefGoogle Scholar
  8. 8.
    Becu L, Maazouz A, Sautereau H, Gerard JF (1997) J Appl Polym Sci 65:2419CrossRefGoogle Scholar
  9. 9.
    Rey L, Poisson N, Maazouz A, Sautereau H (1999) J Mater Sci 34:1775CrossRefGoogle Scholar
  10. 10.
    Hayes BS, Seferis JC (2001) Polym Compos 22:451CrossRefGoogle Scholar
  11. 11.
    Azimi HR, Pearson RA, Hertzberg RW (1996) Polym Eng Sci 36:2352CrossRefGoogle Scholar
  12. 12.
    Azimi HR, Pearson RA, Hertzberg RW (1995) J Appl Polym Sci 58:449CrossRefGoogle Scholar
  13. 13.
    Sautereau H, Maazouz A, Gerard JF, Trotignon JP (1995) J Mater Sci 30:1715CrossRefGoogle Scholar
  14. 14.
    Azimi HR, Pearson RA, Hertzberg RW (1996) J Mater Sci 31:3777CrossRefGoogle Scholar
  15. 15.
    Brown EN, White SR, Sottos NR (2004) J Mater Sci 39:1703CrossRefGoogle Scholar
  16. 16.
    White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Nature 409:794CrossRefGoogle Scholar
  17. 17.
    Brown EN, Sottos NR, White SR (2002) Exp Mech 42:372CrossRefGoogle Scholar
  18. 18.
    Kessler MR, Sottos NR, White SR (2003) Composites Part A 34:743CrossRefGoogle Scholar
  19. 19.
    Brown EN, Kessler MR, Sottos NR, White SR (2003) J Microencapsul 20:719CrossRefGoogle Scholar
  20. 20.
    Brown EN (2003) In: Fracture and Fatigue of a self-healing polymer composite material, PhD dissertation, University of Illinois at Urbana-ChampaignGoogle Scholar
  21. 21.
    Rzeszutko AA, Brown EN, Sottos NR (2004) 2003 Proceedings of 5th Undergraduate Research Conf. in Mechanics, University of Illinois at Urbana-Champaign, TAM Report No. 1041, 27Google Scholar
  22. 22.
    Mostovoy S, Crosley PB, Ripling EJ (1967) J Mater 2:661Google Scholar
  23. 23.
    Wang WZ, Li CT, Ye FX (2004) Vacuum 73:649CrossRefGoogle Scholar
  24. 24.
    Blackman BRK, Hadavinia H, Kinloch AJ, Paraschi M, Williams JG (2003) Engng Fract Mech 70:233CrossRefGoogle Scholar
  25. 25.
    Macon DJ, Anderson GL (2002) J Appl Polym Sci 86:1821CrossRefGoogle Scholar
  26. 26.
    Beres W, Koul AK, Thambraj R (1997) J Test Eval 25:2419Google Scholar
  27. 27.
    Cammino R, Gosz M, Mostovoy S (2000) In: Proceedings of ASME International Congress and Exposition 415:17Google Scholar
  28. 28.
    Kessler MR (2002) In: Characterization and performance of a self-healing composite material, PhD dissertation, University of Illinois at Urbana-ChampaignGoogle Scholar
  29. 29.
    Saxena A, Hudak SJ Jr (1978) Int J Fract 14:453CrossRefGoogle Scholar
  30. 30.
    Karger-Kocsis J, Friedrich K (1992) Colloid Polym Sci 270:549CrossRefGoogle Scholar
  31. 31.
    Chudnovsky A, Kim A, Bosnyak CP (1992) Int J Fract 55:209Google Scholar
  32. 32.
    Irwin GR (1960) Proceedings of 7th Sagamore Ornance Mater. Res. Conf. 4:63Google Scholar
  33. 33.
    Xiao K, Ye L, Kwok YS (1998) J Mater Sci 33:2831CrossRefGoogle Scholar
  34. 34.
    Araki W, Adachi T, Gamou M, Yamaji A (2002) Proc I Mech E Part L 216:79Google Scholar
  35. 35.
    Endo K, Okada T, Komai K, Kiyota M (1972) Bull Japan Soc Mech Eng 15:1316CrossRefGoogle Scholar
  36. 36.
    Galvin G, Naylor H (1964) Proc Inst Mech Eng J 179:56Google Scholar
  37. 37.
    Plumbridge WJ, Ross PJ, Parry JSC (1985) Mater Sci Eng 68:219CrossRefGoogle Scholar
  38. 38.
    Polk C, Murphy W, Rowe C (1975) ASLE Transactions 18:290CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Theoretical and Applied Mechanics and the Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Materials Science and Technology Division, MS G-755Los Alamos National LaboratoryLos AlamosUSA
  3. 3.Department of Aerospace Engineering and the Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations