Journal of Materials Science

, Volume 41, Issue 19, pp 6256–6259 | Cite as

The effect of Sb and Nb on the electrical conductivity of tin dioxide based ceramics

  • D. R. LeiteEmail author
  • I. O. Mazali
  • E. C. Aguiar
  • W. C. Las
  • M. Cilense


The electrical conductivity of Mn doped SnO2 systems prepared by an organic route (Pechini’s method) has been investigated as a function of antimony and niobium concentration. The conductivity increases with the increase of both concentration ions, however, in a different manner. While the conductivity of niobium doped ceramics increases with the power of 1.6 for the entire range of concentrations studied (0.01–0.7 mol%), the conductivity of antimony doped ceramics increases with the power of 1.9 in the range 0.01–0.05 mol% of Sb; 3.7 in the range 0.05–0.30 mol% and 1.8 in the range 0.30–0.70 mol%. This behavior is attributed to the existence of two stable oxidation states for antimony: Sb3+ and Sb5+, while for niobium there is only one: Nb5+. The power of 3.7 for Sb would be related to the segregation of this ion on the grain boundary accompanied by an additional contribution coming from the substitution of Sn2+ by Sb3+ on the grain surface.


SnO2 Oxygen Vacancy Antimony Sb2O4 Conductivity Behavior 


  1. 1.
    Jarzebski ZM, Marton JP (1976) J Electrochem Soc 123:299CCrossRefGoogle Scholar
  2. 2.
    Chopra KL, Major S, Pandya PK (1983) Thin Solid Films 102:1CrossRefGoogle Scholar
  3. 3.
    Fagan JG, Amarakoon VRW (1993) Am Ceram Soc Bull 72:119Google Scholar
  4. 4.
    Olivi P, Souza ECP, Longo E, Varela JA, Bulhões LOS (1993) J Electrochem Soc 140:L81CrossRefGoogle Scholar
  5. 5.
    Cerri JA, Leite ER, Gouvêa D, Longo E, Varela JA (1996) J Am Ceram Soc 79:799CrossRefGoogle Scholar
  6. 6.
    Clarke DR (1999) J Am Ceram Soc 82:485CrossRefGoogle Scholar
  7. 7.
    Bacelar WR, Oliveira MM, Souza VC, Longo E, Leite ER, Varela JA (2002) J Mater Sci: Mater Electron 13:409Google Scholar
  8. 8.
    Bueno PR, Cassia-Santos MR, Simões LGP, Gomes JW, Longo E, Varela JA (2002) J Am Ceram Soc 85:282CrossRefGoogle Scholar
  9. 9.
    Uematsu K, Kato Z, Uchida N, Saito K (1987) J Am Ceram Soc 70:142CCrossRefGoogle Scholar
  10. 10.
    Szczuko D, Werner J, Oswald S, Behr G, Wetzig K (2001) Appl Surface Sci 179:301CrossRefGoogle Scholar
  11. 11.
    Las WC, Dolet N, Dordor P, Bonnet JP (1993) J Appl Phys 74:6191CrossRefGoogle Scholar
  12. 12.
    Pianaro SA, Bueno PR, Longo E, Varela JA (1995) J Mater Sci Lett 14:692CrossRefGoogle Scholar
  13. 13.
    Gouvêa D, Varela JA, Longo E, Smith A, Bonnet JP (1993) Eur J Solid State Inorg Chem 30:915Google Scholar
  14. 14.
    Cox PA, Egdell RG, Harding C, Patterson WR, Tavener PJ (1982) Surf Sci 123:179CrossRefGoogle Scholar
  15. 15.
    Dyshel DE (1996) Inorg Mat 32:51Google Scholar
  16. 16.
    Cox DF, Fryberger TB, Semancik S (1988) Phys Rev B 38:2072CrossRefGoogle Scholar
  17. 17.
    Vincent CA (1972) J Eletrochem Soc Solid State Sci Technol 119:515Google Scholar
  18. 18.
    Terrier C, Chatelon JP, Roger JA (1997) J Sol–Gel Sci Technol 10:75CrossRefGoogle Scholar
  19. 19.
    Mazali IO, Las WC, Cilense M (2003) J Mater Sci 38:3325CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • D. R. Leite
    • 1
    Email author
  • I. O. Mazali
    • 1
  • E. C. Aguiar
    • 1
  • W. C. Las
    • 1
  • M. Cilense
    • 1
  1. 1.Departamento de Físico-QuímicaInstituto de Química – UNESPAraraquaraBrazil

Personalised recommendations