Journal of Materials Science

, Volume 41, Issue 18, pp 5976–5980 | Cite as

The influence of tetrahydrofuran treatment on hydrogen storage properties of the magnesium



The hydriding and dehydriding properties of the tetrahydrofuran (THF) treated magnesium, along with its electronic energy states, crystalline structure and micro morphology have been investigated. The THF treated magnesium absorbs 6.3 wt% hydrogen at 723 K and 3.5 MPa. After hydrogenation, in addition to the expected hydride MgH2, a new less-stable hydride phase appears at 673 K, but not at a lower temperature. Desorption produces 5.5 wt% hydrogen at 723 K against a back-pressure of 1.3 Pa after 20 cycles of hydriding–dehydriding. The THF treatment improves the kinetics of hydrogen absorption and desorption. The THF treated Mg exhibited reasonable reaction rates with hydrogen at 623 K. XPS (X-ray Photo-electron Spectroscopy) studies show that THF treatment causes the electronic energy state of the magnesium atoms to shift, but the XRD (X-Ray Diffractometer) studies show the crystal structure remains unchanged. It is believed that the chemical state of magnesium surface is activated by THF treatment in favor of hydrogen absorption and desorption. Metallographic observation of the magnesium hydrides reveals some interesting features during hydrogenation.


Hydride Hydrogen Storage MgH2 Hydrogen Storage Capacity Magnesium Atom 



The experimental work has been done in author’s previous employment. Author thanks Drs. Tom Walters and Ted Motyka of Savannah River National Laboratory for their comments and discussion on this paper.


  1. 1.
    Wiberg B (1951) Z Naturforsch 6B:394CrossRefGoogle Scholar
  2. 2.
    Schober T, Chason MK (1982) In: Veziroglu T (ed) Metal-hydrogen systems, Pub. Pergamon, New York, p 177Google Scholar
  3. 3.
    Imamura H, Takahashi T, Tsuchiya S (1982) J Catal 77:289CrossRefGoogle Scholar
  4. 4.
    Imamura H, Tsuchiya S (1983) J Chem Soc Faraday Trans I 79:1461CrossRefGoogle Scholar
  5. 5.
    Liao SJ, Zhang SQ, Yu SW (1988) Acta Chem Sin 64:612Google Scholar
  6. 6.
    Imamura H, Takahashi T, Galleyuillos R (1983) J Less-Comm Met 89:251CrossRefGoogle Scholar
  7. 7.
    Imamura H, Murata Y, Tsuchiya S (1987) J Less-Comm Met 135:277CrossRefGoogle Scholar
  8. 8.
    Imamura H, Sakasai N, Kajii Y (1996) J Alloys Compd 232:218CrossRefGoogle Scholar
  9. 9.
    Chi H, Wang QD et al (2004) Int J Hydrogen Energy 29:737CrossRefGoogle Scholar
  10. 10.
    Huot J, Schulz R et al (2003) J Alloys Compd 356–357:603CrossRefGoogle Scholar
  11. 11.
    Zaluska A, Zaluski L et al (2001) Mechanical Destabilization of Light Metal Hydrides”, IEA Task 12 reportGoogle Scholar
  12. 12.
    Guvendiren M, Bayboru E et al (2004). Int J Hydrogen Energy 29:491CrossRefGoogle Scholar
  13. 13.
    Bobet JL, Grigorova e et al (2004) J Alloy Compd 366:298CrossRefGoogle Scholar
  14. 14.
    Castro F, Bobet JL (2004) J Alloy Compd 366:303CrossRefGoogle Scholar
  15. 15.
    Ivanov E, Konstanchuk I et al (2003) J Alloy Compd 359:320CrossRefGoogle Scholar
  16. 16.
    Liang G, Hout J et al (1999) J Alloy Compd 291:295CrossRefGoogle Scholar
  17. 17.
    Lee DS, Kwon IH et al (2004) J Alloy Compd 366:279CrossRefGoogle Scholar
  18. 18.
    Imamura H, Kamazaki S et al (2000) Int J Hydrogen Energy 25:837CrossRefGoogle Scholar
  19. 19.
    Imamura H, Fukunaga T et al (2003) Acta Mater 51:6407CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Savannah River National LaboratoryAikenUSA

Personalised recommendations