Journal of Materials Science

, Volume 42, Issue 11, pp 3841–3850 | Cite as

Test of the Anderson–Stuart model and correlation between free volume and the ‘universal’ conductivity in sodium silicate glasses

  • Marcio Luis Ferreira NascimentoEmail author


Experimental ionic conductivity σ and activation energy EA data in the binary sodium silicate system are reviewed. Analysis and brief discussion based on 48 glasses in a wide compositional range (between 4 and 45 Na2O mol%) are presented. Emphasis is placed on the application of the Anderson–Stuart model to describe the variation of activation energy EA with sodium concentration. In this analysis were considered experimental parameters such as shear modulus G and relative dielectric permittivity ε, also in wide compositional range. A ‘universal’ finding is obtained using log10σ vs. EA/kBT in 47 of the 48 glasses investigated, where EA is the activation energy for conduction, kB is the Boltzmann constant and T is the absolute temperature. Using conductivity and molar volume from density data, both measured at 20 °C in the same glasses, it was found a remarkable common cubic scaling relation between conductivity enhancement of the free volume due to increase in alkali content. The drastic drop in conductivity by 16 orders of magnitude for so many ion-conducting binary sodium silicate glasses is then caused by structure and ion content. The effects of shear modulus, relative dielectric permittivity and free volume are taken into account, as also the problem of phase separation. In particular, it is suggested that the glass network expansion, which is related to the available free volume, is a parameter that could partially explain the increase in ionic conductivity for this binary system.


Ionic Conductivity Free Volume Na2O Sodium Silicate Alkali Content 



The author acknowledges the Brazilian agencies RHAE, FAPESP and CNPq for the grant, Drs. E. D. Zanotto and G. P. Souza (UFSCar, Brazil) and Dr. V. M. Fokin (Vavilov State Optical Institute, Russia) for valuable suggestions. Special thanks to Dr. R. Muccillo (IPEN, Brazil) for measurements of AC conductivities and helpful assistance.


  1. 1.
    Angell CA (1992) Ann Rev Phys Chem 43:693CrossRefGoogle Scholar
  2. 2.
    Ravaine D, Souquet JL (1977) Phys Chem Glasses 18:27Google Scholar
  3. 3.
    Funke K (1993) Prog Solid State Chem 22:11CrossRefGoogle Scholar
  4. 4.
    Anderson OL, Stuart DA (1954) J Am Ceram Soc 37:573CrossRefGoogle Scholar
  5. 5.
    Bunde A, Ingram MD, Maass P (1994) J Non-Cryst Solids 172/174:1222CrossRefGoogle Scholar
  6. 6.
    Hakim RM, Uhlmann DR (1971) Phys Chem Glasses 12:132Google Scholar
  7. 7.
    Nascimento MLF (2000) MSc Dissertation. Institute of Physics, University of São Paulo (in Portuguese)Google Scholar
  8. 8.
    Buchanan RC, Kingery WD (1965) Compt Rend VII Congr Intern du Verre Bruxelles 2:368Google Scholar
  9. 9.
    Lapp JC, Shelby JE (1986) J Non-Cryst Solids 84:463CrossRefGoogle Scholar
  10. 10.
    Ipatjeva VV, Borisova ZU, Molchanov VS (1967) Zh Prikl Khim 40:1424Google Scholar
  11. 11.
    Makarova TM, Molchanov VS (1961) Opt Mekh Prom 2:26Google Scholar
  12. 12.
    Makarova TM, Mazurin OV, Molchanov VS (1960) Izv Vyssh Uchebn Zaved Khimiya i Khim Tekhnol 3:1072Google Scholar
  13. 13.
    Vakhrameev VI (1968) Steklo 3:84Google Scholar
  14. 14.
    Terai R (1969) J Ceram Soc Jpn 77:318Google Scholar
  15. 15.
    Pronkin AA (1965) In: Khimiya Tverdogo Tela, Leningrad 125Google Scholar
  16. 16.
    Pronkin AA (1979) Fizika i Khimiya Stekla 5:634Google Scholar
  17. 17.
    Hakim RM, Uhlmann DR (1967) Phys Chem Glasses 8:174Google Scholar
  18. 18.
    Ivanov AO, Galant EI (1963) Opt Mekh Prom 3:43Google Scholar
  19. 19.
    Hayward PJ (1976) Phys Chem Glasses 17:54Google Scholar
  20. 20.
    Wakabayashi H (1989) Phys Chem Glasses 30:51Google Scholar
  21. 21.
    Gurikova LM, Zheleztsov VA (1976) Steklo 1:15Google Scholar
  22. 22.
    Matusita K, Takayama S, Sakka S (1980) J Non-Cryst Solids 40:149CrossRefGoogle Scholar
  23. 23.
    Topping JA, Isard JO (1971) Phys Chem Glasses 12:145Google Scholar
  24. 24.
    Unuma H, Sakka S (1987) J Mater Sci Lett 6:996CrossRefGoogle Scholar
  25. 25.
    Wright BM, Shelby JE (2000) Phys Chem Glasses 41:192Google Scholar
  26. 26.
    Haller W, Blackburn DR, Simmons JH (1974) J Am Ceram Soc 57:120CrossRefGoogle Scholar
  27. 27.
    Martin SW, Angell CA (1986) J Non-Cryst Solids 83:185CrossRefGoogle Scholar
  28. 28.
    McElfresh DK, Howitt DG (1986) J Am Ceram Soc 69:C237CrossRefGoogle Scholar
  29. 29.
    Appen AA, Kozlovskaya EI, Fuxi G (1961) Zh Prikhl Khim 34:975Google Scholar
  30. 30.
    Eagan RJ, Swearengen JC (1978) J Am Ceram Soc 61:27CrossRefGoogle Scholar
  31. 31.
    Halleck PM, Pacalo RE, Graham EK (1986) J Non-Cryst Solids 86:190CrossRefGoogle Scholar
  32. 32.
    Karapetian GO, Livshits VY, Tennisson DG (1981) Fiz Khim Stekla 7:188Google Scholar
  33. 33.
    Livshits VY, Tennisson DG, Gukasyan SB, Kostanyan KA (1982) Fiz Khim Stekla 8:688Google Scholar
  34. 34.
    Manghnani MH, Singh BK (1974) Proc Xth Inter Cong Glass, Kyoto 104Google Scholar
  35. 35.
    Molot VA (1992) MSc ThesisGoogle Scholar
  36. 36.
    Takahashi K, Osaka A (1983) J Ceram Soc Jpn 91:116Google Scholar
  37. 37.
    DG Tennison, PhD Thesis, Leningrad (1981)Google Scholar
  38. 38.
    Matusita K, Sakka S, Osaka K, Soga N, Kunugi M (1974) J Non-Cryst Solids 16:308CrossRefGoogle Scholar
  39. 39.
    Appen AA, Fuxi G (1959) Fizika Tverdogo Tela 1:1529Google Scholar
  40. 40.
    Keller F (1932) Z Techn Physik 13:237Google Scholar
  41. 41.
    Stockdale GF (1953) Univ III Bull 50:411Google Scholar
  42. 42.
    Taylor HE (1956) Trans Faraday Soc 52:873CrossRefGoogle Scholar
  43. 43.
    Unuma H, Sakka S (1987) J Mater Sci Lett 6:996CrossRefGoogle Scholar
  44. 44.
    Takata M, Tomozawa M, Watson EB (1982) J Am Ceram Soc 65:91CrossRefGoogle Scholar
  45. 45.
    Nascimento MLF, do Nascimento E, Pontuschka WM, Matusoka M, Watanabe S (2006) Ceramica 52:22CrossRefGoogle Scholar
  46. 46.
    Nascimento MLF, do Nascimento E, Watanabe S (2005) Braz J Phys 35:626CrossRefGoogle Scholar
  47. 47.
    Swenson J, Börjesson L (1996) Phys Rev Lett 77:3569CrossRefGoogle Scholar
  48. 48.
    Adams S, Swenson J (2002) Phys Chem Chem Phys 4:3179CrossRefGoogle Scholar
  49. 49.
    Swenson J, Adams S (2002) Phys Rev B 64:024204CrossRefGoogle Scholar
  50. 50.
    Adams S, Swenson J (2002) Solid State Ion 154/155:151CrossRefGoogle Scholar
  51. 51.
    Adams S, Swenson J (2000) Phys Rev Lett 84:4144CrossRefGoogle Scholar
  52. 52.
    Nascimento MLF, Watanabe S (2005) J Mat Sci 40:5079CrossRefGoogle Scholar
  53. 53.
    Nascimento MLF, Watanabe S (2005) J Mat Sci 40:4423CrossRefGoogle Scholar
  54. 54.
    Nascimento MLF, do Nascimento E, Watanabe S (2006) Mat Chem Phys 96:55CrossRefGoogle Scholar
  55. 55.
    Ingram MD, Pas SJ, Cramer C, Gao Y, Hill AJ (2005) Phys Chem Chem Phys 7:1620CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1. Vitreous Materials Laboratory, Department of Materials EngineeringFederal University of Sao CarlosSao CarlosBrazil

Personalised recommendations