Advertisement

Journal of Materials Science

, Volume 42, Issue 11, pp 3739–3744 | Cite as

Effect of MgF2 on hot pressed hydroxylapatite and monoclinic zirconia composites

  • Zafer Evis
  • Robert H. DoremusEmail author
Article

Abstract

Hydroxylapatite (HA) has been widely used in biomedical applications because of its excellent biocompatibility in the human body. A total of 25 wt% monoclinic (m) zirconia–HA composites (with and without 5 wt% MgF2) were synthesized to investigate their mechanical properties and phase stability. In HA–m-ZrO2 composites, HA and m-ZrO2 reacted to form CaZrO3 when there was no F present in the composite and m-ZrO2 partially transformed to tetragonal ZrO2. When MgF2 was added into the system, it improved the thermal stability of the phases, densification, hardness, and fracture toughness of the composites and it caused the m-ZrO2 to transform completely to t-ZrO2 by incorporating the Mg2+ ions present in MgF2 in the ZrO2. Moreover, the stability of HA was improved by incorporating the F ions from MgF2 in place of OH ions in HA. Substitution of OH by F ions was verified by the change in HA’s hexagonal lattice parameters. A fracture toughness of 2.0 MPa√m was calculated for the composite containing MgF2.

Keywords

MgF2 Fluorapatite Calcium Nitrate Hydroxylapatite Tetragonal ZrO2 

References

  1. 1.
    Legeros RZ, Legeros JP (1993) In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific Publishing Co., Singapore, p 139Google Scholar
  2. 2.
    Matsuno T, Watanabe K, Ono K, Koishi M (1998) J Mater Sci Lett 17:1349CrossRefGoogle Scholar
  3. 3.
    Kim HW, Noh YJ, Koh YH, Kim HE, Kim HM (2002) Biomaterials 23(20):4113CrossRefGoogle Scholar
  4. 4.
    Kijkowska R, Lin S, Legeros RZ (2002) In: Brown S, Clarke I, Williams P (eds) Bioceramics, vol 14. Trans Tech Publications Ltd, Switzerland, p 31Google Scholar
  5. 5.
    Heimann RB, Vu TA (1997) J Mater Sci Lett 16:437CrossRefGoogle Scholar
  6. 6.
    Rao RR, Kannan TS (2002) Mater Sci Eng C 20:187CrossRefGoogle Scholar
  7. 7.
    Chang E, Chang WJ, Wang BC, Yang CY (1997) J Mater Sci Mater Med 8:193CrossRefGoogle Scholar
  8. 8.
    Ahn ES, Gleason NJ, Nakahira A, Ying JY (2001) Nano Lett 1(3):149CrossRefGoogle Scholar
  9. 9.
    Delgado JA, Morejon L, Martinez S, Ginebra MP, Carlsson N, Fernandez E, Planell JA, Clavaguera-mora MT, Rodriguez-Viejo J (1999) J Mater Sci Mater Med 10:715CrossRefGoogle Scholar
  10. 10.
    Jarcho M, Bolen CH, Thomas MB, Babock J, Kay JF, Doremus RH (1976) J Mater Sci 11:2027CrossRefGoogle Scholar
  11. 11.
    Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley Publishing Company, Reading, MA, p 501Google Scholar
  12. 12.
    Slosarczyk A, Bialoskorski J (1998) J Mater Sci Mater Med 9:103CrossRefGoogle Scholar
  13. 13.
    Narasaraju TSB, Phebe DE (1996) J Mater Sci 31:1CrossRefGoogle Scholar
  14. 14.
    Kay MI, Young RA, Posner RS (1964) Nature 204:1050CrossRefGoogle Scholar
  15. 15.
    Young RA (1974) J Dental Res 53:193CrossRefGoogle Scholar
  16. 16.
    Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, NY, 161 ppCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Engineering SciencesMiddle East Technical UniversityAnkaraTurkey
  2. 2.Materials Science and EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations