Journal of Materials Science

, Volume 42, Issue 11, pp 3894–3900 | Cite as

Processing of sucrose to low density carbon foams

  • K. PrabhakaranEmail author
  • P. K. Singh
  • N. M. Gokhale
  • S. C. Sharma


A novel process for preparation low density carbon foams from sucrose has been demonstrated. A resin prepared by heating aqueous acidic sucrose solution when heated in an open Teflon mould at 120 °C undergoes foaming and then setting in to a solid organic foam. The solid organic foam undergoes carbonization in air by dehydration at 250 °C under isothermal condition. Carbon foams thus obtained sintered at temperature in the range 600–1,400 °C showed density in the range 115–145 mg/cc and electrical conductivity in the range 1.5 × 10−5 to 0.2 ohm−1 cm−1, respectively. The carbon foams contain spherical cells of size in the range 450–850 μm and the cells are interconnected through circular or oval shape windows of size in the range 80–300 μm. The carbon foam samples sintered at 1,400 °C showed compressive strength of 0.89 MPa.


Foam Compressive Strength Gluconic Acid Phenol Formaldehyde Foam Sample 



The authors thank Dr. J. Narayana Das, Director, Naval Materials Research Laboratory for his support and keen interest in this work.


  1. 1.
    Cowlard FC, Lewis JC (1967) J Mater Sci 2:507CrossRefGoogle Scholar
  2. 2.
    Knippenberg WF, Dersmacher B (1976) Philips Tech Rev 36:93Google Scholar
  3. 3.
    Noda T, Inagaki M, Yamada S (1969) J Non-Cryst Solids 1:93CrossRefGoogle Scholar
  4. 4.
    Klett RD (1975) High temperature insulating carbonaceous materials. US Patent 3,914,392Google Scholar
  5. 5.
    Bonzom A, Crepaux AP, Montard AMEJ (1981) Process for preparing pitch foams and products so produced. US Patent, 4,276,246Google Scholar
  6. 6.
    Marek R, Udichak W (1975) Foam carbonization and resulting structure. US Patent 3,922,334Google Scholar
  7. 7.
    Vinton C, Franklin C (1975) Method for the preparation of carbon structure. US Patent 3,927,186Google Scholar
  8. 8.
    Spradling DM, Andrew Guth R (2003) Adv Mater Process 11:29Google Scholar
  9. 9.
    Klett JW, Mcmillan AD, Gallego NC, Walls CA (2004) J Mater Sci 39:3659CrossRefGoogle Scholar
  10. 10.
    Raley CF Jr, Asher DR (1976) Process for preparing macroporous open cell carbon foam from normally crystalline vinylidene chloride polymer. US Patent 3,960,770Google Scholar
  11. 11.
    Droege MW (1999) Low density open cell organic foam, low density carbon foams, and method for preparing the same. US Patent 5,945,084Google Scholar
  12. 12.
    Stankiewicz EP (2000) Method for producing controlled aspect ratio reticulated carbon foam and the resultant foam. US Patent 6,103,149Google Scholar
  13. 13.
    Vinton CS, Franklin CH (1979) Activated reticulated or unreticulated carbon structures. US Patent 4,154,704Google Scholar
  14. 14.
    Pekala RW (1989) Low density, resorcinol – formaldehyde aerogels. US Patent 4,873,218Google Scholar
  15. 15.
    Mukai SR, Tamitsuji C, Nishihara H, Tamon H (2005) Carbon 43:2628CrossRefGoogle Scholar
  16. 16.
    Nishihara H, Mukai SR, Tamon H (2004) Carbon 42:899CrossRefGoogle Scholar
  17. 17.
    Inagaki M, Morishita T, Kuno A, Kito T, Hirano M, Suwa T, Kusakawa K (2004) Carbon 42:497CrossRefGoogle Scholar
  18. 18.
    Yamashita J, Ojima T, Shioya M, Hatori H, Yamada Y (2003) Carbon 41:285CrossRefGoogle Scholar
  19. 19.
    Klett RD (1975) High temperature insulating carbonaceous material. US Patent 3,914,392Google Scholar
  20. 20.
    Nagle DC, Byrne CE (2003) Carbonized wood and materials formed therefrom. US Patent 6,670,039Google Scholar
  21. 21.
    Stiller AH, Plucinski J, Yocum A (2003) Method of making carbon foam. US Patent 6,544,491Google Scholar
  22. 22.
    Fujii M, Minohata M (1990) Method for producing elastic graphite structures. US Patent 4,908,200Google Scholar
  23. 23.
    Hardcastle LA, Sheppard RG, Dingus DF (2003) Process for making carbon foam induced by process depressurization. US Patent 6,576,168Google Scholar
  24. 24.
    Klett JW (2003) Pitch-based carbon foam and composites. US Patent 6,663,842Google Scholar
  25. 25.
    Yamada Y, Imamura T, Honda H, Fujii M, Minohata M (1989) Graphite structures and method for production thereof. US Patent 4,873,071Google Scholar
  26. 26.
    Li TQ, Wang CY, An BX, Wang H (2005) Carbon 43:2030CrossRefGoogle Scholar
  27. 27.
    Klett JW, Mcmillan AD, Gallego NC, Burchell TD, Walls CA (2004) Carbon 42:1849CrossRefGoogle Scholar
  28. 28.
    Bohme K, Einicke WD, Klepel O (2005) Carbon 43:1918CrossRefGoogle Scholar
  29. 29.
    Finar IL (1973) Organic chemistry volume. I. The fundamental principles. Longman, London, pp 503–530Google Scholar
  30. 30.
    Kinoshita K (1988) Carbon electrochemical and physical properties. Wiley & Sons, USA, pp 22–75Google Scholar
  31. 31.
    Biscoe J, Warren BE (1942) J Appl Phys 13:364CrossRefGoogle Scholar
  32. 32.
    Jenkins GM, Kawamura K (1976) Polymeric carbons, carbon fibers, glass and char. Cambridge University press, New YorkGoogle Scholar
  33. 33.
    Long JC (1978) In: Grayson M (ed) Encyclopedia of chemical technology, vol 4. John Wiley and Sons, New York, pp 556–560Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • K. Prabhakaran
    • 1
    Email author
  • P. K. Singh
    • 1
  • N. M. Gokhale
    • 1
  • S. C. Sharma
    • 1
  1. 1.Naval Materials Research LaboratoryThaneIndia

Personalised recommendations