Advertisement

Journal of Materials Science

, Volume 42, Issue 11, pp 3851–3855 | Cite as

Crystallite size study of nanocrystalline hydroxyapatite and ceramic system with titanium oxide obtained by dry ball milling

  • C. C. SilvaEmail author
  • M. P. F. Graça
  • M. A. Valente
  • A. S. B. Sombra
Article

Abstract

High energy dry ball milling has been used to produce nanocrystallite powders of Hydroxyapatite (HAP) using the starting materials Ca(H2PO4)2 and Ca(OH)2. The calcium phosphate system with titanium (CaP-Ti) were prepared with the raw materials Ca(H2PO4)2 and TiO2. The HAP was obtained after a couple of hours of milling (5, 10 and 15 h) and in the reaction with CaP-Ti was obtained after 5 h of milling. The HAP and the ceramic calcium phosphate with titanium (CaP-Ti) were studied by X-Ray powder Diffraction and Scanning Electron Microscopy (SEM). The grain size analysis through XRD shows that the particle size of HAP increase of the milling time and the size of CaTi4P6O24 decrease with the increase of the milling time.

Keywords

TiO2 Milling Hydroxyapatite Milling Time Rietveld Refinement 

Notes

Acknowledgements

This work was partly sponsored by CAPES (Brazilian agency) and UIFSCOSD Physics Department University of Aveiro – Portugal.

References

  1. 1.
    Weeber AW, Bakker H (1988) Physica B 153:93CrossRefGoogle Scholar
  2. 2.
    Yavari AR, Desré PJ, Benameur T (1992) Phys Rev Lett 68:2235CrossRefGoogle Scholar
  3. 3.
    Constantz BR, Ison IC, Fulmer MT et al (1995) Science 267:1796CrossRefGoogle Scholar
  4. 4.
    Lavernia C, Schoenung JM (1991) Bull Am Ceram Soc Ceram Bull 70:95Google Scholar
  5. 5.
    Sergo V, Sbaizero O, Clarke DR (1997) Biomaterials 18:477CrossRefGoogle Scholar
  6. 6.
    Antonios G, Mikos et al (1996) Biomaterials 17:175Google Scholar
  7. 7.
    Liu HS et al (1997) Ceram Int 23:19CrossRefGoogle Scholar
  8. 8.
    Laranjeira MCM, et al (2000) Quimica Nova 23:441CrossRefGoogle Scholar
  9. 9.
    Heimke G (1989) Angew Chem 101:111CrossRefGoogle Scholar
  10. 10.
    Hench LL (1991) J Am Ceram Soc 74:1487CrossRefGoogle Scholar
  11. 11.
    Bet MR et al (1997) Quimica Nova 20:475CrossRefGoogle Scholar
  12. 12.
    Nie X, Leyland A, Mattews A (2000) Surface Coatings Technol 125:407CrossRefGoogle Scholar
  13. 13.
    Silva CC, Thomazini D, Pinheiro AG, Lanciotti F Jr, Sasaki JM, Góes JC, Sombra ASB (2002) J Phys Chem Solids 63:1745CrossRefGoogle Scholar
  14. 14.
    Silva CC, Valente MA, Graça MPF, Sombra ASB (2004) Solid State Sci 6:1365CrossRefGoogle Scholar
  15. 15.
    Rietveld HM (1967) Acta Crystallogr 22:151CrossRefGoogle Scholar
  16. 16.
    Azároff LV (1968) Elements of X-ray crystallography. McGraw-Hill Book CompanyGoogle Scholar
  17. 17.
    Almeida AF et al (2004) Solid State Sci 6:267CrossRefGoogle Scholar
  18. 18.
    Silva CC et al (2004) Mater Sci Eng C 24:549CrossRefGoogle Scholar
  19. 19.
    JCPDS-Pattern 24-0033 (HA-REF), 49-0787 (CaTi4P6O24), 09-0347 ((Ca(H2PO4)2 · H2O) and 76-0649(TiO2)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • C. C. Silva
    • 1
    • 3
    Email author
  • M. P. F. Graça
    • 2
  • M. A. Valente
    • 2
  • A. S. B. Sombra
    • 3
  1. 1.Metallurgical and Materials Engineering DepartmentFederal University of CearáFortalezaBrazil
  2. 2.Department PhysicsUniversity of AveiroAveiroPortugal
  3. 3.Telecommunications and Materials Science and Engineering Laboratory (LOCEM), Department of PhysicsFederal University of CearáFortalezaBrazil

Personalised recommendations