Journal of Materials Science

, Volume 42, Issue 12, pp 4521–4529 | Cite as

Crystal morphologies in thin films of PEO/PMMA blends

  • B. C. Okerberg
  • H. MarandEmail author


Crystallization in thin films of poly(ethylene oxide) in blends with poly(methyl methacrylate) has been studied. The film thickness is fixed at 120 nm, while the blend composition, PMMA molar mass, and crystallization temperature are varied. Blends with a composition of 50/50 (wt% PEO/wt% PMMA) exhibit a variety of morphologies that are highly dependent on PMMA molar mass and crystallization temperature. A needle morphology not previously reported in this system is also observed. For 40/60 blends, dendrites and DBM are observed at high PMMA molar mass. At low PMMA molar mass, a number of morphologies are observed over small changes in the experimental controls. In 35/65 blends, dendritic growth is observed with sidebranches at 45° and 90° to the dendrite trunk at low undercooling and only at 90° for larger undercooling. For 30/70 blends, dendritic growth is observed over a large range of PMMA molar mass and crystallization temperature. Maps demonstrating the role of the control parameters on morphological development are reported. The observed morphologies are believed to result from the combined effects of the lack of crystallizable chains at the growth front, low dimensionality, rejection of non-crystallizable chains, and variation of the effective levels of noise and/or anisotropy.


PMMA Crystallization Temperature Dendritic Growth Growth Front Morphological Transition 



The authors thank the donors of the Petroleum Research Fund, administered by the American Chemical Society (Grant ACS PRF #34069-AC7), for partial support of this work. The authors would also like to thank Jack Douglas and Vincent Ferreiro for helpful discussions.


  1. 1.
    Kurz W, Fisher DJ (1998) Fundamentals of solidification. Trans Tech Publications, SwitzerlandGoogle Scholar
  2. 2.
    Ben Amar M, Pomeau Y (1988) Europhys Lett 6(7):609CrossRefGoogle Scholar
  3. 3.
    Maurer J, Bouissou P, Perrin B, Tabeling P (1989) Europhys Lett 8(1):67CrossRefGoogle Scholar
  4. 4.
    Adda Bedia M, Ben Amar M (1991) In growth and form. Plenum Press, New York, pp 187–199CrossRefGoogle Scholar
  5. 5.
    Jackson KA (1958) Liquid metals and solidification ASM. Cleveland, p 174Google Scholar
  6. 6.
    Kessler DA, Koplik J, Levine H (1984) Phys Rev A 30:2820CrossRefGoogle Scholar
  7. 7.
    Glicksman ME, Schaefer RJ, Ayers JD (1976) Metall Trans A 7:1747CrossRefGoogle Scholar
  8. 8.
    Huang SC, Glicksman ME (1981) Acta Metall 29:701CrossRefGoogle Scholar
  9. 9.
    Dougherty A, Gunawardana A (1994) Phys Rev E 50(2):1349CrossRefGoogle Scholar
  10. 10.
    Honjo H, Otha S, Sawada Y (1985) Phys Rev Lett 55(8):841CrossRefGoogle Scholar
  11. 11.
    Shibkov AA, Zheltov MA, Korolev AA, Kazakov AA, Leonov AA (2005) J Cryst Growth 285:215CrossRefGoogle Scholar
  12. 12.
    Koo K, Ananth R, Gill WN (1991) Phys Rev A 44(6):3782CrossRefGoogle Scholar
  13. 13.
    Tirmizi SH, Gill WN (1989) J Cryst Growth 96:277CrossRefGoogle Scholar
  14. 14.
    Bisang U, Bilgram JH (1996) Phys Rev E 54(5):5309CrossRefGoogle Scholar
  15. 15.
    Singer HM, Bilgram JH (2004) Phys Rev E 70:031601CrossRefGoogle Scholar
  16. 16.
    Singer HM, Bilgram JH (2005) J Cryst Growth 275:e243CrossRefGoogle Scholar
  17. 17.
    Rubinstein ER, Glicksman ME (1991) J Cryst Growth 112:97CrossRefGoogle Scholar
  18. 18.
    Honjo H, Sawada Y (1982) J Cryst Growth 58:297CrossRefGoogle Scholar
  19. 19.
    Langer JS (1980) Rev Mod Phys 52(1):1CrossRefGoogle Scholar
  20. 20.
    B Billia, R Trivedi (1993) Handbook of Crystal Growth, Fundamentals: transport and stability, vol. 1B. Elsevier Science Publishers B.V., New York, pp 899–1073Google Scholar
  21. 21.
    Glicksman ME, Marsh SP (1993) Handbook of crystal growth, fundamentals: transport and stability, vol. 1B. Elsevier Science Publishers B.V., New York, pp 1075–1122Google Scholar
  22. 22.
    Keller A (1958) Growth and Perfection of Crystals, Wiley-Interscience, New York, pp 499–532Google Scholar
  23. 23.
    Khoury F, Padden FJ (1960) J Polym Sci 47:455CrossRefGoogle Scholar
  24. 24.
    Geil PH, Reneker DH (1961) J Polym Sci 51:569CrossRefGoogle Scholar
  25. 25.
    Wunderlich B, Sullivan P (1962) J Polym Sci 61:195CrossRefGoogle Scholar
  26. 26.
    Mareau VH, Prud’homme RE (2005) Macromolecules 38(2):398CrossRefGoogle Scholar
  27. 27.
    Sakai Y, Imai M, Kaji K, Tsuji M (1996) Macromolecules 29(27):8830CrossRefGoogle Scholar
  28. 28.
    Reiter G, Sommer J (2000) J Chem Phys 112(9):4376CrossRefGoogle Scholar
  29. 29.
    Wang M, Braun H, Meyer E (2003) Polymer 44:5015CrossRefGoogle Scholar
  30. 30.
    Taguchi K, Miyaji H, Izumi K, Hoshino A, Miyamoto Y, Kokawa R (2001) Polymer 42:7443CrossRefGoogle Scholar
  31. 31.
    Zhang F, Liu J, Huang H, Du B, He T (2002) Eur Phys J E8:289Google Scholar
  32. 32.
    Lovinger AJ, Cais RE (1984) Macromolecules 17(10):1939CrossRefGoogle Scholar
  33. 33.
    Beers KL, Douglas JF, Amis EJ, Karim A (2003) Langmuir 19:3935CrossRefGoogle Scholar
  34. 34.
    Ferreiro V, Douglas JF, Warren J, Karim A (2002) Phys Rev E 65:042802–1CrossRefGoogle Scholar
  35. 35.
    Ferreiro V, Douglas JF, Warren J, Karim A (2002) Phys Rev E 65:051606–1CrossRefGoogle Scholar
  36. 36.
    Ben-Jacob E, Deutscher G, Garik P, Goldenfeld ND, Lareah Y (1986) Phys Rev Lett 57(15):1903CrossRefGoogle Scholar
  37. 37.
    Ben-Jacob E, Godbey R, Goldenfeld ND, Koplik J, Levine H, Mueller T, Sander LM (1985) Phys Rev Lett 55(12):1315CrossRefGoogle Scholar
  38. 38.
    Brener E, Müller-Krumbhaar H, Temkin D (1992) Europhys Lett 17(6):535CrossRefGoogle Scholar
  39. 39.
    Goldenfeld N (1987) J Cryst Growth 84:601CrossRefGoogle Scholar
  40. 40.
    Müller-Krumbhaar H, Zimmer M, Ihle T, Saito Y (1996) Physica A 224:322CrossRefGoogle Scholar
  41. 41.
    Bisault J, Ryschenkow G, Faivre G (1991) J Cryst Growth 110:889CrossRefGoogle Scholar
  42. 42.
    Carr SM, Subramanian KN (1982) J Cryst Growth 60:307CrossRefGoogle Scholar
  43. 43.
    Matsuno T, Koishi M (1989) J Cryst Growth 94:798CrossRefGoogle Scholar
  44. 44.
    Kurz W, Trivedi R (1990) Acta Metall Mater 38(1):1CrossRefGoogle Scholar
  45. 45.
    Keith HD, Padden FJ Jr (1963) J Appl Phys 34(8):2409CrossRefGoogle Scholar
  46. 46.
    Keith HD, Padden FJ Jr (1964) J Appl Phys 35(4):1270CrossRefGoogle Scholar
  47. 47.
    Bassett DC, Olley RH, al Raheil IAM (1988) Polymer 29:1539CrossRefGoogle Scholar
  48. 48.
    Keith HD (1964) J Polym Sci A 2:4339Google Scholar
  49. 49.
    Keith HD, Padden FJ Jr (1987) J Polym Sci Part B: Polym Phys 25:2371CrossRefGoogle Scholar
  50. 50.
    Schultz JM (1991) Polymer 32(18):3268CrossRefGoogle Scholar
  51. 51.
    Russell TP, Ito H, Wignall GD (1988) Macromolecules 21(6):1703CrossRefGoogle Scholar
  52. 52.
    Brener E, Müller-Krumbhaar H, Temkin D (1996) Phys Rev E 54(3):2714CrossRefGoogle Scholar
  53. 53.
    Shochet O, Kassner K, Ben-Jacob E, Lipson SG, Müller-Krumbhaar H (1992) Physica A 187:87CrossRefGoogle Scholar
  54. 54.
    Bogoyavlenskiy VA, Chernova NA (2000) Phys Rev E 61(2):1629CrossRefGoogle Scholar
  55. 55.
    Hutter JL, Bechhoefer J (1999) Phys Rev E 59(4):4342CrossRefGoogle Scholar
  56. 56.
    Lamelas FJ, Seader S, Zunic M, Sloane CV, Xiong M (2003) Phys Rev B 67:045414–1CrossRefGoogle Scholar
  57. 57.
    Shibkov AA, Golovin YI, Zheltov MA, Korolev AA, Leonov AA (2003) Physica A 319:65CrossRefGoogle Scholar
  58. 58.
    Hobbs JK, Hill MJ, Keller A, Barham PJ (1999) J Poly Sci B: Polym Phys 37(22):3188CrossRefGoogle Scholar
  59. 59.
    Marand H, Xu JN, Srinivas S (1998) Macromolecules 31(23):8219CrossRefGoogle Scholar
  60. 60.
    Alfonso GC, Russell TP (1986) Macromolecules 19(4):1143CrossRefGoogle Scholar
  61. 61.
    Barham PJ, Chivers RA, Keller A, Martinez-Salazar J, Organ SJ (1985) J Mater Sci 20(5):1625CrossRefGoogle Scholar
  62. 62.
    Okerberg BC, Marand H, Submitted to Physical Review EGoogle Scholar
  63. 63.
    Jukes PC, Das A, Durell M, Trolley D, Higgins AM, Geoghegan M, Macdonald JE, Jones RAL, Brown S, Thompson P (2005) Macromolecules 38(6):2315CrossRefGoogle Scholar
  64. 64.
    For a discussion of the variation of Tg with film thickness, see: Ellison CJ, Mundra MK, Torkelson JM (2005) Macromolecules 38(5):1767CrossRefGoogle Scholar
  65. 65.
    Keith HD, Padden FJ Jr (1986) Polymer 27:1463CrossRefGoogle Scholar
  66. 66.
    Kovacs AJ, Straupe C, Gonthier A (1977) J Poly Sci: Poly Symp 59:31Google Scholar
  67. 67.
    Khoury F (1966) J Res Natl Bur Stand 70A:29CrossRefGoogle Scholar
  68. 68.
    Lotz B, Wittmann JC (1986) J Polym Sci Part B: Polym Phys 24(7):1541CrossRefGoogle Scholar
  69. 69.
    Brener E, Müller-Krumbhaar H, Temkin D, Abel T (1998) Physica A 249:73CrossRefGoogle Scholar
  70. 70.
    Xu H, Matkar R, Kyu T (2005) Phys Rev E 72:011804–1CrossRefGoogle Scholar
  71. 71.
    Ihle T, Müller-Krumbhaar H (1993) Phys Rev Lett 70:3083CrossRefGoogle Scholar
  72. 72.
    Marentette JM, Brown GR (1998) Polymer 39(6–7):1405CrossRefGoogle Scholar
  73. 73.
    Liu F, Goldenfeld N (1990) Phys Rev A 42(8):5052CrossRefGoogle Scholar
  74. 74.
    Okerberg B PhD thesis, Virginia Polytechnic Institute and State University, September 2005Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringVirginia TechBlacksburgUSA
  2. 2.Department of ChemistryVirginia TechBlacksburgUSA

Personalised recommendations