Journal of Materials Science

, Volume 42, Issue 12, pp 4325–4333 | Cite as

Combustion and thermal properties of OctaTMA-POSS/PS composites

  • Lei Liu
  • Yuan HuEmail author
  • Lei Song
  • Shonali Nazare
  • Shuqin He
  • Richard Hull


Inorganic–organic composites of octa(tetramethylammonium) polyhedral oligomeric silsesquioxanes (OctaTMA-POSS) and polystyrene (PS) were prepared by melt-mixing method. The composites were characterized by Fourier-transform infrared spectrometry (FT-IR), Transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), and thermal gravimetric analysis (TGA). Their flammability was evaluated by cone calorimeter test. The experimental results indicate that OctaTMA-POSS, when present in low ratios (1%–5%, weight ratio) in the composites, can decrease the peak heat release rate (HRR) by 15%, while high ratios of OctaTMA-POSS (20% and 30%) can decrease the peak HRR and the average HRR approximately linearly. Concentration and release rate of carbon monoxide (CO) in the composites combustion are also decreased evidently. Thermal gravimetric analysis under nitrogen and air atmosphere both show that the char yield increases obviously. These advances are attributed to the special properties of OctaTMA-POSS and its dispersion in PS.


Heat Release Rate Thermal Gravimetric Analysis Mass Loss Rate Cone Calorimeter Char Residue 



We wish to thank the National Natural Science Foundation of China (No.50403014), Specialized Research Fund for the Doctoral Program of Higher Education (20040358056) and Bolton Fellowship supported by The University of Bolton, UK for financial support.


  1. 1.
    Giancaspro J, Balaguru P, Lyon R (2004) SAMPE J 40:42Google Scholar
  2. 2.
    Zhang H, Westmoreland PR, Farris RJ, Coughlin EB, Plichta A, Brzozowski ZK (2002) Polymer 43:5463CrossRefGoogle Scholar
  3. 3.
    Brzozowski ZK, Kijenska D, Zatorski W (2002) Des Monomers Polym 5:183CrossRefGoogle Scholar
  4. 4.
    Bourbigot S, Flambard X, Ferreira M, Poutch F (2002) J Fire Sci 20:3CrossRefGoogle Scholar
  5. 5.
    Chen-Yang YW, Lee HF, Yuan CY (2000) J Polym Sci – Pol Chem 38:972CrossRefGoogle Scholar
  6. 6.
    Srinivasan S, Kagumba L, Riley DJ, Mcgrath JE (1997) Macromol Symp 122:95CrossRefGoogle Scholar
  7. 7.
    Kumar D, Khullar M, Gupta AD (1993) Polymer 34:3025CrossRefGoogle Scholar
  8. 8.
    Gilman JW, Bourbigot S, Shields JR, Nyden M, Kashiwagi T, Davis RD, Vanderhart DL, Demory W, Wilkie CA, Morgan AB, Harris J, Lyon RE (2003) J Mater Sci 38:4451CrossRefGoogle Scholar
  9. 9.
    Bourbigot S, Vanderhart DL, Gilman JW, Awad WH, Davis RD, Morgan AB, Wilkie CA (2003) J Polym Sci Pol Phys 41:3188CrossRefGoogle Scholar
  10. 10.
    Bourbigot S, Gilman JW, Wilkie CA (2004) Polym Degrad Stabil 84:483CrossRefGoogle Scholar
  11. 11.
    Lee A, Lichtenhan JD (1999) J Appl Polym Sci 73:1993CrossRefGoogle Scholar
  12. 12.
    Lee A, Lichtenhan JD (1998) Macromolecules 31:4970CrossRefGoogle Scholar
  13. 13.
    Zhang J, Zhang HP (2005) J Fire Sci 23:193CrossRefGoogle Scholar
  14. 14.
    Chen DZ, Yang HY, He PS, Zhang WA (2005) Compos Sci Technol 65:1593CrossRefGoogle Scholar
  15. 15.
    Braun U, Schartel B (2005) J Fire Sci 23:5CrossRefGoogle Scholar
  16. 16.
    Balabanovich AI (2004) J Fire Sci 22:163CrossRefGoogle Scholar
  17. 17.
    Balabanovich AI, Levchik GF, Yang JH (2002) J Fire Sci 20:519CrossRefGoogle Scholar
  18. 18.
    Braun U, Schartel B (2004) Macromol Chem Physic 205:2185CrossRefGoogle Scholar
  19. 19.
    Simonson M, Tullin C, Stripple H (2002) Chemosphere 46:737CrossRefGoogle Scholar
  20. 20.
    Levchik SV, Bright DA, Moy P, Dashevsky S (2001) J Vinyl Addit Techn 6:123CrossRefGoogle Scholar
  21. 21.
    Murashko EA, Levchik GF, Levchik SV, Bright DA, Dashevsky S (1998) J Fire Sci 16:233CrossRefGoogle Scholar
  22. 22.
    Boscoletto AB, Checchin M, Milan L, Pannocchia P, Tavan M, Camino G, Luda MP (1998) J Appl Polym Sci 67:2231CrossRefGoogle Scholar
  23. 23.
    Benrashid R, Nelson GL, Ferm DJ (1994) J Fire Sci 12:529CrossRefGoogle Scholar
  24. 24.
    Boscoletto AB, Checchin M, Tavan M, Camino G, Costa L, Luda MP (1994) J Appl Polym Sci 53:121CrossRefGoogle Scholar
  25. 25.
    Boscoletto AB, Checchin M, Milan L, Camino G, Costa L, Luda MP (1993) Makromol Chem-M Symp 74:35CrossRefGoogle Scholar
  26. 26.
    Roma P, Luda MP, Camino G (1993) Makromol Chem-M Symp 74:299CrossRefGoogle Scholar
  27. 27.
    Checchin M, Boscoletto AB, Camino G, Luda MP, Costa L (1993) Makromol Chem-M Symp 74:311CrossRefGoogle Scholar
  28. 28.
    Liu XF, Zhang J, Zhang HP (2004) Acta Polym Sin 5:650Google Scholar
  29. 29.
    Bhaskar T, Matsui T, Uddin MA, Kaneko J, Muto A, Sakata Y (2003) Appl Catal B-Environ 43:229CrossRefGoogle Scholar
  30. 30.
    Jakab E, Uddin MA, Bhaskar T, Sakata Y (2003) J Anal Appl Pyrol 68–69:83CrossRefGoogle Scholar
  31. 31.
    Devaux E, Rochery M, Bourbigot S (2002) Fire Mater 26:149CrossRefGoogle Scholar
  32. 32.
    Bartholmai M, Schartel B (2004) Polym Advan Technol 15:355CrossRefGoogle Scholar
  33. 33.
    Connell JE, Metcalfe E, Thomas MJK (2000) Polym Int 49:1092CrossRefGoogle Scholar
  34. 34.
    Liu TM, Baker WE, Langille KB, Nguyen DT, Bernt JO (1998) J Vinyl Addit Techn 4:246CrossRefGoogle Scholar
  35. 35.
    Laine RM (2005) J Mater Chem 15:3725CrossRefGoogle Scholar
  36. 36.
    Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Chem Rev 95:1409CrossRefGoogle Scholar
  37. 37.
    Li GZ, Wang LC, Ni HL, Pittman CU (2001) J Inorg Organomet P 11:123CrossRefGoogle Scholar
  38. 38.
    Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Camino G (2006) Thermochim Acta 440:36CrossRefGoogle Scholar
  39. 39.
    Liu L, Hu Y, Li XK, Chen ZY, Fan WC (2005) Thermochim Acta 438:164CrossRefGoogle Scholar
  40. 40.
    Mya KY, Huang J, Xiao Y, He CB, Siow YP, Dai J (2003) Abstr Pap Am Chem S 226:U528–U529 448-PMSE Part 2Google Scholar
  41. 41.
    Constable GS, Lesser AJ, Coughlin EB (2004) Macromolecules 37:1276CrossRefGoogle Scholar
  42. 42.
    Choi J, Yee AF, Laine RM (2003) Macromolecules 36:5666CrossRefGoogle Scholar
  43. 43.
    Tamaki R, Tanaka Y, Asuncion MZ, Choi JW, Laine RM (2001) J Am Chem Soc 123:12416CrossRefGoogle Scholar
  44. 44.
    Choi J, Harcup J, Yee AF, Zhu Q, Laine RM (2001) J Am Chem Soc 123:11420CrossRefGoogle Scholar
  45. 45.
    Tamaki R, Choi J, Laine RM (2003) Chem Mater 15:793CrossRefGoogle Scholar
  46. 46.
    Kim SG, Choi J, Tamaki R, Laine RM (2005) Polymer 46:4514CrossRefGoogle Scholar
  47. 47.
    Laine RM, Choi J, Lee I (2001) Adv Mater 13:800CrossRefGoogle Scholar
  48. 48.
    Fina A, Tabuani D, Frache A, Camino G (2005) Polymer 46:7855CrossRefGoogle Scholar
  49. 49.
    ISO 5660-1993 (1993) Fire test-reaction to fire part I: Rate of heat release from building products (Cone Calorimeter Method). International Standards Organization (ISO), GenevaGoogle Scholar
  50. 50.
    Babrauskas V, Peacock RD (1992) Fire Safety J 18:255CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Lei Liu
    • 1
  • Yuan Hu
    • 1
    Email author
  • Lei Song
    • 1
  • Shonali Nazare
    • 2
  • Shuqin He
    • 1
  • Richard Hull
    • 2
  1. 1.State Key Laboratory of Fire ScienceUniversity of Science & Technology of ChinaHefeiChina
  2. 2.Centre for Materials Research and Innovation The University of BoltonDeane Road BoltonGreater ManchesterUK

Personalised recommendations