Advertisement

Journal of Materials Science

, Volume 42, Issue 12, pp 4630–4635 | Cite as

Reaction sequences and influence factors during carbothermal synthesis of ultrafine TiN powders

  • Daoping Xiang
  • Ying LiuEmail author
  • Zhiwei Zhao
  • Shengji Gao
  • Mingjing Tu
Article

Abstract

Ultrafine TiN powders were synthesized by Carbothermal Reduction-Nitridation (CRN) method using nano titania and nano carbon black as raw materials. Phase transition sequences during reaction and influence of main technological factors were investigated using X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The results indicate that phase transition sequences were TiO2→Ti10O19→Ti3O5→TiOxNy→TiN. At the same time, CRN reaction consists of three continuous stages. In the first stage, nano TiO2 powders were reduced to Ti3O5. In the second stage, Ti3O5 was totally converted into TiOxNy. TiN solid solution formed completely by the end of the third stage. The rapidest reaction rate was observed in the second stage and the lowest was in the third stage. Higher reaction temperature, longer isothermal time, or larger nitrogen pressure was in favor of synthesizing TiN powders.

Keywords

TiO2 Titanium Nitride Nitrogen Pressure Nitridation Time Flowing Nitrogen Atmosphere 

Notes

Acknowledgements

This research was supported by key science and technology projects of Sichuan province in China. The authors would like to thank associate professor Jiayu Zeng for her helpful contribution on SEM micrographs.

References

  1. 1.
    Castro DT, Ying JY (1997) NanoStruct Mater 9:67CrossRefGoogle Scholar
  2. 2.
    Liu L, Xu YD, Li H, Li GH, Zhang LD (2002) J Eur Ceram Soc 22:2409CrossRefGoogle Scholar
  3. 3.
    Wexler D, Parker D, Palm V, Calka A (2004) Mater Sci Eng A375–377:905Google Scholar
  4. 4.
    Liu L, Han CL, Xu YD, Chao S, Shi M, Feng JP (2004) Mater Sci Eng A382:122CrossRefGoogle Scholar
  5. 5.
    Andrievski RA (1997) NanoStruct Mater 9:607CrossRefGoogle Scholar
  6. 6.
    Andrievski RA (1999) Int J Refract Met Hard Mater 17:153CrossRefGoogle Scholar
  7. 7.
    Gu HC, Hu LM (1994) J East China Uiniversity of Sci Tech 20(2):141 (in Chinese)Google Scholar
  8. 8.
    Cao LH, Fu L, Fan YS (1997) Chinese J Ceram Soc 25(1):106 (in Chinese)Google Scholar
  9. 9.
    Sakka Y, Okuyama H, Uchikoshi T, Ohno S (1997) NanoStruct Mater 8(4):465CrossRefGoogle Scholar
  10. 10.
    Yang XG, Li C, Yang BJ, Wang W, Qian YT (2004) Chem Phys Lett 383:502CrossRefGoogle Scholar
  11. 11.
    Yang XG, Li C, Yang BJ, Wang W, Qian YT (2004) Mater Res Bull 39:957CrossRefGoogle Scholar
  12. 12.
    Yamasaki T, Zheng YJ, Ogino Y, Terasawa M, Mitamura T, Fukami T (2003) Mater Sci Eng A350:168CrossRefGoogle Scholar
  13. 13.
    Welham NJ, Llewellyn DJ (1999) J Eur Ceram Soc 19:2833CrossRefGoogle Scholar
  14. 14.
    Zhang S, Tam SC (1997) J Mater Process Tech 67:112CrossRefGoogle Scholar
  15. 15.
    Wexler D, Parker D, Palm V, Calka A (2004) Mater Sci Eng A 375–377:905Google Scholar
  16. 16.
    Ren RM, Yang ZG, Shaw LL (2000) Mater Sci Eng A286:65CrossRefGoogle Scholar
  17. 17.
    Li JL, Li F, Hu KA, Zhou Y (2002) J Alloys Comp 334:253CrossRefGoogle Scholar
  18. 18.
    Lin L (2000) Dev Appl Mater 15(5):6 (in Chinese)Google Scholar
  19. 19.
    Li JG, Gao L, Zhang QH, Sun J, Li W (2003) Chinese J Inorg Mater 18(4):765 (in Chinese)Google Scholar
  20. 20.
    Berger LM, Gruner W, Langholf E, et al (1999) Int J Refract Met Hard Mater 17:235CrossRefGoogle Scholar
  21. 21.
    White GV, Mackenzie KJD, Brown IWM, et al (1992) J Mater Sci 27:4294CrossRefGoogle Scholar
  22. 22.
    Shaviv R (1996) Mater Sci Eng A209:345CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Daoping Xiang
    • 1
  • Ying Liu
    • 1
    Email author
  • Zhiwei Zhao
    • 1
  • Shengji Gao
    • 1
  • Mingjing Tu
    • 1
  1. 1.College of Materials Science and EngineeringSichuan UniversityChengduP.R. China

Personalised recommendations