Advertisement

Journal of Materials Science

, Volume 42, Issue 11, pp 3825–3830 | Cite as

Effects of different particle sizes on electrochemical performance of spinel LiMn2O4 cathode materials

  • Ting-Feng YiEmail author
  • Xin-Guo Hu
  • Chang-Song Dai
  • Kun Gao
Article

Abstract

Spinel LiMn2O4 were prepared by adipic acid-assisted sol–gel method at 800 °C, and the cathode materials with different particle sizes were obtained through ball milling. The effects of different particle sizes on electrochemical performance of LiMn2O4 sample were investigated by X-ray diffraction (XRD), galvanostatic charge–discharge test, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), respectively. XRD data exhibits that all samples exhibit the same pure spinel phase; EIS and CV indicate that LiMn2O4 samples with smaller particle size have higher charge transfer resistance and oxidation potential than that of other samples corresponding to the extraction of Li+ ions, respectively; galvanostatic charge–discharge test shows that the particle size has significant effects on the electrochemical performance of spinel LiMn2O4 cathode materials.

Keywords

Electrochemical Impedance Spectroscopy Electrochemical Performance Cathode Material Differential Thermal Analysis Curve Adipic Acid 

Notes

Acknowledgements

The authors gratefully acknowledge financial support from Harbin Institute of Technology. The authors also thank Dr. Ying Wang of Institute of Chemistry Chinese Academy of Sciences for his helpful discussion on the experimental techniques.

References

  1. 1.
    Fukutsuka T, Sakamoto K, Matsuo Y, Sugie Y, Abe T, Ogumi Z (2004) Electrochem Solid-State Lett 7:A481CrossRefGoogle Scholar
  2. 2.
    Sun YC, Wang ZX, Huang XJ, Chen LQ (2004) J Power Sources 132:161CrossRefGoogle Scholar
  3. 3.
    Tarascon M, Wang E, Shokoohi FK, Mckinnon WR, Colson S (1991) J Electrochem Soc 138:2859CrossRefGoogle Scholar
  4. 4.
    Thackeray MM, Johnson PJ, Picciotto LA, Bruce PG, Goodenough PG (1984) Mater Res Bull 19:179CrossRefGoogle Scholar
  5. 5.
    Xia Y, Zhou Y, Yoshio M (1997) J Electrochem Soc 144:2593CrossRefGoogle Scholar
  6. 6.
    Pistoia G, Antonini A, Rosati R, Zane D (1996) Electrochim Acta 41:2863CrossRefGoogle Scholar
  7. 7.
    Guyomard D, Tarascon JM (1992) J Electrochem Soc 139:937CrossRefGoogle Scholar
  8. 8.
    Gadjov H, Gorova M, Kotzeva V, Avdeev G, Uzunova S, Kovacheva D (2004) J Power Sources 134:110CrossRefGoogle Scholar
  9. 9.
    Aurbach D, Markovsky B, Shechter A, Ein-Eli Y, Cohen H (1996) J Electrochem Soc 143:3809CrossRefGoogle Scholar
  10. 10.
    Matsuda K, Taniguchi I (2004) J Power Sources 132:156CrossRefGoogle Scholar
  11. 11.
    Yamada A (1996) J. Solid State Chem 122:160CrossRefGoogle Scholar
  12. 12.
    Vacassy R, Hofmann H, Papageorgious N, Gratzel M (1999) J Power Sources 81:621CrossRefGoogle Scholar
  13. 13.
    Dziembaj R, Molenda M (2003) J Power Sources 119–121:121Google Scholar
  14. 14.
    Tarascon JM, Mckinnon WR, Coowar F, Bowmer TN, Amatucci G, Guyomard D (1994) J Electrochem Soc 141:1421CrossRefGoogle Scholar
  15. 15.
    Wen SJ, Richardson TJ, Ma L, Striebel KA, Ross PNJR, Cairns EJ (1996) J Electrochem Soc 143:L136Google Scholar
  16. 16.
    Levi MD, Aurbach D (1997) J Phys Chem B 101:4630CrossRefGoogle Scholar
  17. 17.
    Levi MD, Levi EA, Aurbach D (1997) J Electroanal Chem 421:89CrossRefGoogle Scholar
  18. 18.
    Aurbach D, Levi MD, Levi EA (1998) J Electrochem Soc 145:3024CrossRefGoogle Scholar
  19. 19.
    Wang GG, Wang JM, Mao WQ, Shao HB, Zhang JQ, Cao CN (2005) J Solid State Electrochem 9:524CrossRefGoogle Scholar
  20. 20.
    Miura K, Yamada A, Tanaka M (1996) Electrochim Acta 41:249CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ting-Feng Yi
    • 1
    Email author
  • Xin-Guo Hu
    • 1
  • Chang-Song Dai
    • 1
  • Kun Gao
    • 1
  1. 1.Department of Applied ChemistryHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations