Journal of Materials Science

, Volume 41, Issue 24, pp 8160–8165 | Cite as

Structural properties of electrophoretically deposited europium oxide nanocrystalline thin films

  • S. V. Mahajan
  • D. W. Kavich
  • M. L. Redigolo
  • J. H. DickersonEmail author


The structural properties of nanocrystalline europium oxide (Eu2O3) thin films, produced via electrophoretic deposition (EPD), were investigated. We found that EPD from our Eu2O3 nanocrystal solutions yielded both translucent films, with uniform size and distribution of the microstructure, and opaque films, with marked anisotropy to the size and distribution of the constituents of the microstructure. The disparity in the film morphology arose from the initial temperature conditions of the nanocrystal solution. The translucent films, produced from pre-chilled (−25 °C) EPD solutions, were bimodal films, comprised of homogeneous, tightly packed, glassy nanocrystalline films interspersed with micron-sized nanocrystal aggregates. In contrast, the opaque films, produced from room temperature solutions, consisted of an irregularly distributed and shaped microstructure. The evolution of the microstructure was monitored for the chilled samples as a function of film thickness (deposition time) and juxtaposed with the resultant structure of the room temperature film. Optical microscopy and scanning electron microscopy were employed to characterize the films.


Scanning Electron Microscopy Image Eu2O3 Electrophoretic Deposition EuCl3 Europium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Sandra Rosenthal and Dmitry Koktysh for fruitful discussions and Enrique Jackson for assistance with the optical microscopy images. This research is supported in part by Vanderbilt Institute for Nanoscale Science and Engineering (VINSE).


  1. 1.
    Leskelä M, Niinistö L (1992) Mater Chem Phys 31:7CrossRefGoogle Scholar
  2. 2.
    Shea L, Mckittrick J, Lopez O, Sluzky E (1996) J Am Ceram Soc 79:3257CrossRefGoogle Scholar
  3. 3.
    Meltzer RS, Hong KS (2000) Phys Rev B 61:3396CrossRefGoogle Scholar
  4. 4.
    Ram S, Mohanty P (2002) J Mat Sci Lett 21:1127CrossRefGoogle Scholar
  5. 5.
    Mohanty P, Ram S (2003) J Mat Chem 13:3021CrossRefGoogle Scholar
  6. 6.
    Bazzi R, Flores MA, Louis C, Lebbou K, Zhang W, Dujardin C, Roux S, Mercier B, Ledoux G, Bernstein E, Perriat P, Tillement O (2004) Colloid Interf Sci 273:191CrossRefGoogle Scholar
  7. 7.
    Carnall T, Fields PR, Rajnak KJ (1968) J Chem Phys 49:4450CrossRefGoogle Scholar
  8. 8.
    Eilers H, Tissue BM (1996) Chem Phys Lett 251:74CrossRefGoogle Scholar
  9. 9.
    Bihari B, Eilers H, Tissue BM (1997) J Lumin 75:1CrossRefGoogle Scholar
  10. 10.
    Wakefield G, Heron HA, Dobson PJ, Hutchinson JL (1999) J Colloid Interf Sci 215:179CrossRefGoogle Scholar
  11. 11.
    Feng J, Shan G, Maquieira A, Koivunen ME, Guo B, Hammock BD, Kennedy IM (2003) Anal Chem 75:5288Google Scholar
  12. 12.
    Härmä H, Soukka T, Lövgren T (2001) Clin Chem 47:561Google Scholar
  13. 13.
    Raue R, Vink AT, Welker T (1989) Philips Tech Rev 44:225Google Scholar
  14. 14.
    Jiao H, Wang J, Liao F, Tian S, Jing X (2004) J Electrochem Soc 151:H49CrossRefGoogle Scholar
  15. 15.
    Mochizuki S, Nakanishi T, Suzuki Y, Ishi K (2001) Appl Phys Lett 79:3785CrossRefGoogle Scholar
  16. 16.
    Ono H, Kusumata T (2001) Appl Phys Lett 78:1832CrossRefGoogle Scholar
  17. 17.
    Singh MP, Shivashankar SA (2005) J Cryst Grow 276:148CrossRefGoogle Scholar
  18. 18.
    Wong EM, Searson PC (1999) Appl Phys Lett 74:2939CrossRefGoogle Scholar
  19. 19.
    Islam MA, Herman IP (2002) Appl Phys Lett 80:823CrossRefGoogle Scholar
  20. 20.
    Maenosono S, Okubo T, Yamaguchi Y (2003) J Nano Res 5:5CrossRefGoogle Scholar
  21. 21.
    Islam MA, Xia Y, Telesca Jr DA, Steigerwald ML, Herman IP (2004) Chem Mater 16:49CrossRefGoogle Scholar
  22. 22.
    Murray CB (1995) Synthesis and characterization of II–VI quantum dots and their assembly into 3D quantum dot superlattices. Massachusetts Institute of Technology, Cambridge, MA, PhD thesis, 164ppGoogle Scholar
  23. 23.
    Kagan CR, Murray CB, Bawendi MG (1996) Phys Rev B 54:8633CrossRefGoogle Scholar
  24. 24.
    Murray CB, Kagan CR, Bawendi MG (2000) Annu Rev Mater Sci 30:545CrossRefGoogle Scholar
  25. 25.
    Gonzales-Cuenca M, Maarten Biesheuvel P, Verweij H (2000) AIChE J 46:626CrossRefGoogle Scholar
  26. 26.
    Preston MA, Kornbrekke R, White LR (2005) Langmuir 21:9832CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • S. V. Mahajan
    • 1
  • D. W. Kavich
    • 2
  • M. L. Redigolo
    • 2
  • J. H. Dickerson
    • 2
    Email author
  1. 1.Interdisciplinary Program in Materials ScienceVanderbilt UniversityNashvilleUSA
  2. 2.Department of Physics and AstronomyVanderbilt UniversityNashvilleUSA

Personalised recommendations