Journal of Materials Science

, Volume 41, Issue 24, pp 8115–8122 | Cite as

Engineering performance in applied EPD: problems and solutions

  • Martin Zarbov
  • David Brandon
  • Nissim Cohen
  • Liat Shemesh
Article

Abstract

Providing the particle size, shape and size distribution are suitable, appropriate dispersion media and surface-active additives can usually be found for the electrophoretic deposition (EPD) of powder with any chemical composition. The design of the EPD cell is largely dictated by the geometry of the final product and the required dimensional tolerances. The integrity of the microstructure and freedom of the product from process defects commonly depend on the deposition parameters and the dispersion chemistry.

Demonstrations of laboratory feasibility for EPD products may prove straightforward, but developing an EPD process technology that is suitable for mass production can be far more challenging. This contribution reports four examples:

  • 1. The deposition of silver thermal sinks in low-temperature, co-fired ceramic (LTCC) tape vias.

  • 2. The formation and printing of silver-base alloy lines for conducting interconnects.

  • 3. The embedding of passive ceramic components in punched ceramic tape.

  • 4. The production of porous conducting anodes for solid electrolyte capacitors.

In each case, the process parameters have been selected to satisfy the engineering requirements while minimizing the formation of process defects. Observed defects include variations in the particle packing density; loss of adhesion to the substrate, cracking of the deposit and surface roughness or thickness variations.

References

  1. 1.
    Zhitomirsky I (2000) JOM-e 52(1)Google Scholar
  2. 2.
    Randall C, Van Tassel J (2001) Encyclopedia Mater Sci Technol :2733Google Scholar
  3. 3.
    Hunter RJ (2001) Foundations of colloid science, 2nd ed. OUP, New YorkGoogle Scholar
  4. 4.
    Sarkar P, Nicholson PS (1996) J Am Ceram Soc 79(8):1987CrossRefGoogle Scholar
  5. 5.
    Biesheuvel PM, Verweij H (1999) J Am Ceram Soc 82(6):1451CrossRefGoogle Scholar
  6. 6.
    Anné G, Vanmeensel K, Vleugels J, Van Der Biest O (2005) J Am Ceram Soc 88(8):2036CrossRefGoogle Scholar
  7. 7.
    Nagarajan N, Nicholson PS (2004) J Am Ceram Soc 87(11):2053CrossRefGoogle Scholar
  8. 8.
    Li J, Wu YJ, Tanaka H, Yamamoto T, Kuwabara M (2004) J Am Ceram Soc 87(8):1578CrossRefGoogle Scholar
  9. 9.
    Thomas BJC, Boccaccini AR, Shaffer MSP (2005) J Am Ceram Soc 88(4):980CrossRefGoogle Scholar
  10. 10.
    Van Tassel J, Daga A, Randall CA (1999) IMAPS, Washington, DCGoogle Scholar
  11. 11.
    Van Tassel J, Randall CA (1999) J Eur Ceram Soc 19:955CrossRefGoogle Scholar
  12. 12.
    Basu RN, Randall CA, Mayo MJ (2001) J Am Ceram Soc 84(1):33CrossRefGoogle Scholar
  13. 13.
    Van Tassel J, Randall CA (2004) J Mater Sci 39:867CrossRefGoogle Scholar
  14. 14.
    Zhang W, Schneibel JH (1995) Acta Metall Mater 43:4377CrossRefGoogle Scholar
  15. 15.
    Wakai F, Yoshida M, Shinoda Y, Akatsu T (2005) Acta Mater 53:1361CrossRefGoogle Scholar
  16. 16.
    Napper DH (1983) Polymeric stabilization of colloidal dispersions. Academic Press LimitedGoogle Scholar
  17. 17.
    Zarbov M, Schuster I, Gal-Or L (2004) J Mater Sci 39:813CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Martin Zarbov
    • 1
  • David Brandon
    • 1
    • 2
  • Nissim Cohen
    • 1
  • Liat Shemesh
    • 1
  1. 1.Cerel—Ceramic Technologies Ltd.Tirat Ha’CarmelIsrael
  2. 2.Faculty of Materials EngineeringTechnion—Israel Institute of TechnologyHaifaIsrael

Personalised recommendations