Journal of Materials Science

, Volume 42, Issue 11, pp 3928–3935 | Cite as

Substitution site effect on structural and dielectric properties of La–Bi modified PZT

  • Puja Goel
  • K. L. YadavEmail author


Substitution site effect of (La:Bi) on the structural and dielectric properties of chemically prepared PZT system Pb0.92 (La1−xBix) 0.08(Zr0.65Ti0.35)0.98O3 [(a) x = 0.0, (b) x = 0.1, (c) x = 0.2, (d) x = 0.3, (e) x = 0.4 and (f) x = 1.0] have been studied. The samples were prepared by employing a simple co-precipitation technique using nitrates of lead, lanthanum, bismuth, zirconium and titanium isopropoxide. X-ray diffraction studies confirm the formation of phase pure and homogeneous ceramics of rhombohedral symmetry without bismuth addition and a tetragonal symmetry was confirmed for the compounds containing bismuth due to the presence of a doublet (200) peak in these compounds. Scanning electron micrographs shows a uniform grain distribution and the grain size and shape were modified upon bismuth addition. Increase in Bi content causes a decrease in average grain size of the material. Dielectric measurements demonstrate a diffuse type of phase transition and this diffuseness decreases with increasing Bi ion concentration. Composition (A) only showed relaxor type of behaviour. Variation of dielectric constant with temperature shows that both Tc and εmax increases with increase of Bi concentration. This was explained on the basis of favorable B-site substitution of Bi+3 ions and therefore the increased strength of spontaneous polarization. Finally, it is evident that the type of substitution site also has a significant effect on the dielectric properties of the PZT system. All these results suggest that the synthesized ceramics may be suitable for device applications.


Perovskite Bismuth Titanium Isopropoxide Diffuse Phase Transition Bismuth Lead 



The authors thank to Head of the Physics Department and Head of Metallurgy and Materials Engineering for their kind help and encouragement. One of us (P.G.) thanks M.H.R.D, India for providing a research fellowship.


  1. 1.
    Mandal TK, Ram S (2003) Matt Lett 57:2432CrossRefGoogle Scholar
  2. 2.
    AL -Shareef HN, Dimos D (1997) J Am Ceram Soc 80:3127CrossRefGoogle Scholar
  3. 3.
    Meyer V, Sallese JM, Fazan P, Bard D, Pecheux F (2003) Solid State Electron 47:1479CrossRefGoogle Scholar
  4. 4.
    Tokumitsu E, Nakamura R-I, Ishwara H (1997) IEEE Electron Dev Lett 18:160CrossRefGoogle Scholar
  5. 5.
    Bondurant DW, Gnadinger FG (1989) IEEE Spectrum 26:30CrossRefGoogle Scholar
  6. 6.
    Moilanen H, Leppavuori S (1995) Microelectron Int 37:28CrossRefGoogle Scholar
  7. 7.
    Laurent M, Schreiner U, Langjahr PA, Glazounov AE, Hoffman MJ (2001) J Eur Ceram Soc 21:1495CrossRefGoogle Scholar
  8. 8.
    Klissurska RD, Tagantsev AK, Brooks KG, Setter N (1997) J Am Ceram Soc 80:336CrossRefGoogle Scholar
  9. 9.
    Yadav KL, Choudhary RNP (1993) J Mat Sci 28:769CrossRefGoogle Scholar
  10. 10.
    Yadav KL, Choudhary RNP (1993) J Mater Sci Lett 12:561CrossRefGoogle Scholar
  11. 11.
    Yadav KL, Choudhary RNP (1992) In: Chowdari BWR et al. (eds) Solid sate ionics: materials and applications. World Scientific publishing company, Singapore, p 735Google Scholar
  12. 12.
    Park HB, Park CY, Hong YS, Kim K, Kim SJ (1999) J Am Ceram Soc 82:94CrossRefGoogle Scholar
  13. 13.
    Sharma HD, Tripathi AK, Charier V, Goel TC, Pillai PKC (1994) J Mater Sci Eng B25:29CrossRefGoogle Scholar
  14. 14.
    Pramila P, Goel TC, Pillai PKC (1993) J Mater Sci Lett 12:1657CrossRefGoogle Scholar
  15. 15.
    Sharma HD, Govindan A, Goel TC, Pillai PKC, Pramila C (1996) J Mater Sci Lett 15:1424CrossRefGoogle Scholar
  16. 16.
    Jung SC, Park HB, Kim J, Kim K, Kim SJ (1994) J Kor Ceram Soc 31:155Google Scholar
  17. 17.
    Shannigrahi SR, Choudhary RNP, Acharya HN (1999) J Appl Phys 85:1713CrossRefGoogle Scholar
  18. 18.
    Ray J, Hing P, Choudhary RNP (2001) Mater Lett 51:434CrossRefGoogle Scholar
  19. 19.
    Heartling GH (1987) Ferroelectrics 75:25CrossRefGoogle Scholar
  20. 20.
    Hardtl K, Hennings D (1972) J Am Ceram Soc 55:230CrossRefGoogle Scholar
  21. 21.
    Ramji L, Sharma SC, Rajiv D (1989) Ferroelectrics 100:43CrossRefGoogle Scholar
  22. 22.
    Lee KM, Jan HM, Park WJ (1997) J Mater Res 12:1603CrossRefGoogle Scholar
  23. 23.
    Tan Q, Viehland D (1987) J Appl Phys 81:361CrossRefGoogle Scholar
  24. 24.
    Wu TB, Shyu MJ, Chung CC, Lee HY (1995) J Am Ceram Soc 78:2168CrossRefGoogle Scholar
  25. 25.
    Goel P, Yadav KL, James AR (2004) J Phys D Appl Phys 37:1CrossRefGoogle Scholar
  26. 26.
    Martiena HT, Barfoot JC (1974) J Phys C Solid-State Phys 7:3182CrossRefGoogle Scholar
  27. 27.
    Okazaki K, Nagata K (1973) J Am Ceram Soc 56:82CrossRefGoogle Scholar
  28. 28.
    Suryanarayana C, Norton MG (1998) In: X-ray diffraction: a practical approach. Plenum Press, New York and London, p 213CrossRefGoogle Scholar
  29. 29.
    Gonnard P, Troccaz M (1978) J Solid State Chem 23:321CrossRefGoogle Scholar
  30. 30.
    Akhtar MJ, Akhtar Z-U-N, Jackson RA (1995) J Am Ceram Soc 78(2):421CrossRefGoogle Scholar
  31. 31.
    Heartling GH, Land CE (1971) J Am Ceram Soc 54:1CrossRefGoogle Scholar
  32. 32.
    Chen I-W, Li P, Wang Y (1996) J Phy Chem Solids 57:1525CrossRefGoogle Scholar
  33. 33.
    Tareev B (1979) In: Physics of dielectric materials. Mir Publishers, Moscow, p 157Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Smart Materials Research Laboratory, Department of PhysicsIndian Institute of TechnologyRoorkeeIndia

Personalised recommendations