Advertisement

Journal of Materials Science

, Volume 42, Issue 11, pp 3789–3799 | Cite as

Candidate mechanisms controlling the electrical characteristics of silica/XLPE nanodielectrics

  • Mihir Roy
  • J. Keith Nelson
  • R. K. MacCrone
  • L. S. SchadlerEmail author
Article

Abstract

The incorporation of silica nanoparticles into polyethylene has been shown to increase the breakdown strength significantly compared to composites with micron scale fillers. Additionally, the voltage endurance of the nanocomposites is two orders of magnitude higher than that of the base polymer. The most significant difference between micron-scale and nano-scale fillers is the large interfacial area in nanocomposites. Because the interfacial region (interaction zone) is likely to be pivotal in controlling properties, this paper compares the behavior of nanoscale silica/cross-linked low density polyethylene nanocomposites with several silica surface treatments. In addition to breakdown strength and voltage endurance, dielectric spectroscopy, absorption current measurements, and thermally stimulated current determinations (TSC) were performed to elucidate the role of the interface. It was found that a reduction in the mobility in nanocomposites as well as a change in the defect size may be key to explaining the improvement in the properties.

Keywords

Electron Paramagnetic Resonance Breakdown Strength Trap Depth Thermally Stimulate Current Base Resin 

Notes

Acknowledgements

The authors are grateful to the Electric Power Research Institute for the support of this activity and to Professor Fothergill’s research group at the University of Leicester, UK for the contribution of pulsed electroacoustic measurements. Discussions with Dr. Clive Reed on the chemical aspects of this work are also gratefully acknowledged.

References

  1. 1.
    Nelson J, Fothergill JC (2004) Nanotechnology 15:586CrossRefGoogle Scholar
  2. 2.
    Ma D, Siegel RW, Hong JI, Schadler LS, Mårtensson E, Önneby C (2004) J Mater Res 19(3):857CrossRefGoogle Scholar
  3. 3.
    Nelson JK, Hu Y (2005) J Phys D (Appl Phys) 38:213CrossRefGoogle Scholar
  4. 4.
    Nelson JK, Fothergill JC, Dissado LA, Peasgood W (2002) In: Proceedings of the conference on Elec Insul & Dielec Phenom, IEEE, Mexico, pp 295–298Google Scholar
  5. 5.
    Montanari GC, Fabiani D, Palmieri F, Kaempfer D, Thomann R, Mulhaupt R (2004) IEEE Trans Diel Elect Insul 11(5):754CrossRefGoogle Scholar
  6. 6.
    Ajayan PM, Braun PV, Schadler LS (2003) In: Nanocomposite Science and Technology, Wiley-VCH Verlag, GmbH&Co. KgaA, WeinhamGoogle Scholar
  7. 7.
    Tanaka T, Montanari GC, Mülhaupt R (2004) IEEE Trans Diel Elect Insul 11/5:763CrossRefGoogle Scholar
  8. 8.
    Lewis TJ (1994) IEEE Trans Diel Elect Insul 1:812CrossRefGoogle Scholar
  9. 9.
    Lewis TJ (2004) IEEE Trans Diel Elect Insul 11:739CrossRefGoogle Scholar
  10. 10.
    Fujita F, Ruike M, Baba M (1996) Conference record of the 1996. IEEE Intl Symp Elec Ins, IEEE, San Francisco 2:738Google Scholar
  11. 11.
    Khalil MS, Henk PO, Henriksen M (1990) Conference record of the 1990 IEEE International Symp on Elec. Insul; IEEE, Montreal, Canada, p 268Google Scholar
  12. 12.
    Fothergill JC, Nelson JK, Fu M (2004) Proceedings of the IEEE Conf on Elect Insul & Diel Phenom, CEIDP, Oct. 17–20. pp 406–409Google Scholar
  13. 13.
    Ma D, Akpalu YA, Li Y, Siegel RW, Schadler LS (2005) J Polym Sci Part B Polym Phys 43(5):463CrossRefGoogle Scholar
  14. 14.
    Malec D, Truong H, Essolbi R, Hoand TG (1998) IEEE Trans Diel Elect Insul 5/2:301CrossRefGoogle Scholar
  15. 15.
    Roy M, Nelson JK, MacCrone RK, Schadler LS, Reed CW, Keefe R, Zenger W (2005) IEEE Trans Diel Elect Insul 12:629CrossRefGoogle Scholar
  16. 16.
    Lunsford JH (1973) Catal Rev 8(1):135CrossRefGoogle Scholar
  17. 17.
    Canet D (1996) Nuclear magnetic resonance: concepts and methods. John Wiley & Sons Inc., Chichester, New YorkGoogle Scholar
  18. 18.
    Dissado LA, Fothergill JC (1992) Electrical degradation and breakdown in polymers. Peter Peregrinus LtdGoogle Scholar
  19. 19.
    Ieda M, Mizutani T, Suzuoki Y (1980) Polymers, Memoirs of the Faculty of Engineering, Nagoya University, 32/2Google Scholar
  20. 20.
    Peacock JA (2000) Handbook of polyethylene: structures, properties and applications. Marcel Dekker, New YorkCrossRefGoogle Scholar
  21. 21.
    Lichtenecker K, Rother K (1931) Phys Zeit 32:255Google Scholar
  22. 22.
    Maxwell-Ganet JC (1904) Philos Trans Roy Soc Lond Ser A 203:385CrossRefGoogle Scholar
  23. 23.
    Landau LD, Lifshitz EM (1984) Electrodynamics of continuous media, 2nd edn. Pergamon Press, OxfordCrossRefGoogle Scholar
  24. 24.
    Jonscher AK (1983) Dielectric relaxation of solids. Chelsea Dielectric PressGoogle Scholar
  25. 25.
    O’Konski J (1960) J Phys Chem 64:605CrossRefGoogle Scholar
  26. 26.
    Maeta S, Sakaguchi K (1980) Jpn J Appl Phys 19/3:519CrossRefGoogle Scholar
  27. 27.
    Van Turnhout J (1975) Thermally stimulated discharge for polymer electrets. Elsevier, AmsterdamGoogle Scholar
  28. 28.
    Raju GG (2003) Dielectrics in electric fields. Marcel Dekker, New YorkCrossRefGoogle Scholar
  29. 29.
    Many A, Rakavy G (1962) Theory of transient-space-charge-limited currents in solids in the presence of trapping. Phys Rev 126/6:1980CrossRefGoogle Scholar
  30. 30.
    Roy M, Nelson JK, Schadler LS, Zou C, Fothergill JC (2005) Ann Rep conf on Electrical Insulation and Dielectric Phenomenon, IEEE, pp 183–186Google Scholar
  31. 31.
    Artbauer J (1996) J Phys D Appl Phys 29:446CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Mihir Roy
    • 1
  • J. Keith Nelson
    • 2
  • R. K. MacCrone
    • 1
  • L. S. Schadler
    • 1
    Email author
  1. 1.Materials Science and Engineering DepartmentRensselaer Polytechnic InstituteTroyUSA
  2. 2.Electrical, Computer, and Systems Engineering DepartmentRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations