Advertisement

Journal of Materials Science

, Volume 42, Issue 12, pp 4461–4469 | Cite as

Synthesis of 3-dimensional mesoporous silica using a di-block copolymer template

  • Jinlan Ju
  • Huining XiaoEmail author
  • Zisheng Zhang
Article

Abstract

Exploring polymeric surfactants as templates for synthesizing ordered mesoporous silicas has become increasingly important for both academic interests and industrial applications. In this work, we employed C16EO40, a di-block copolymer polyethylene-poly(ethylene oxide), as template in an attempt to synthesize a modified 3-dimensional wormhole mesoporous silicas (WMS-39). In addition, various synthesizing conditions were investigated, including pre-hydrolysis time of TEOS, reaction temperatures and the ratios of TEOS to template. The products were characterized using powder XRD, TEM, 29Si MAS NMR and nitrogen adsorption measurements. The characteristics of as-synthesized mesoporous silica were compared with SBA-15, a highly ordered mesoporous silica, prepared using non-ionic tri-block copolymers of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) as templates. The WMS-39 materials have a BET surface area of 600–970 m2/g and narrowly distributed pore diameter around 3.9 nm. The morphology of WMS-39 was found to be wormhole framework as indicated in TEM diagrams. Thermal transformation of the as-synthesized mesoporous materials were carefully analyzed with TGA/DTA. Findings obtained from this work enable us to propose a modified assembly mechanism of mesoporous silicas.

Keywords

Mesoporous Silica Ethylene Oxide Ethylene Oxide Transmission Electron Micrographs Hexagonal Mesoporous Silica 

Notes

Acknowledgements

The authors are grateful to the AIF (Atlantic Innovation Foundation) Canada for financial support. The authors also express their thanks to Dr Michael Lumsden at the Dalhousie University for 29Si MAS NMR analysis, and Dr Louise Weaver at the University of New Brunswick for TEM measurements.

References

  1. 1.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710CrossRefGoogle Scholar
  2. 2.
    Beck JS, Vartuli JC, Roth WJ et al (1992) J Am Chem Soc 114:10834CrossRefGoogle Scholar
  3. 3.
    Turaga UT, Song C (2003) Catal Today 86:129CrossRefGoogle Scholar
  4. 4.
    Klimova T, Calderon M, Ramirez J (2003) Appl Catal A: Gen 240:29CrossRefGoogle Scholar
  5. 5.
    Liu BS, Xu DF, Chu JX, Liu W, Au CT (2007) Energy Fuels 21(1):250CrossRefGoogle Scholar
  6. 6.
    Tanev PT, Pinnavaia TJ (1995) Science 267:865CrossRefGoogle Scholar
  7. 7.
    Zhang W, Pauly TR, Pinnavaia TJ (1997) Chem Mater 9:2491CrossRefGoogle Scholar
  8. 8.
    Zhang W, Frobea M, Pinnavaia TJ (1996) J Am Chem Soc 118:9164CrossRefGoogle Scholar
  9. 9.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548CrossRefGoogle Scholar
  10. 10.
    Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024CrossRefGoogle Scholar
  11. 11.
    Stucky GD, Chmeka BF, Zhao D, Melosh N, Huo Q, Feng J, Yang P, Lukens W (1999) Int. Patent WO99/37705Google Scholar
  12. 12.
    Zhao D, Huo Q, Feng J, Kim J, Han Y, Stucky GD (1999) Chem Mater 11:2668CrossRefGoogle Scholar
  13. 13.
    Huo Q, Feng J, Schueth F, Stucky GD (1997) Chem Mater 9:14CrossRefGoogle Scholar
  14. 14.
    Huo Q, Leon R, Petroff PM, Stucky GD (1995) Science 268:1324CrossRefGoogle Scholar
  15. 15.
    Huo Q, Margloese DI, Ciesia U, Feng P, Stucky GD (1994) Nature 367:317CrossRefGoogle Scholar
  16. 16.
    Trong OD, Desplantier-Giscard D, Danumah C, Kaliaguine S (2001) Appl Catal A: Gen 222:299CrossRefGoogle Scholar
  17. 17.
    Smarsly B, Polarz S, Antonietti M (2001) J Phys Chem B 105:10473CrossRefGoogle Scholar
  18. 18.
    Flodstrom K, Alfredsson V (2003) Microporous Mesoporous Mater 59:167CrossRefGoogle Scholar
  19. 19.
    Kipkemboi P, Fogden A, Flodstrom K (2001) Langmuir 17:5398CrossRefGoogle Scholar
  20. 20.
    Hamley LW (2000) Introduction of soft matter. John Wiley & Sons, p 193Google Scholar
  21. 21.
    Coltan BK, Kelts LW (1994) In: Bergna HE (ed) The colloid chemistry of silica. American Chemical Society, pp 403–418Google Scholar
  22. 22.
    Pouxviel JC, Boilot JP (1987) J Non-Cryst Solids 89:345CrossRefGoogle Scholar
  23. 23.
    Pavikovitch PI, Domhnail SCO, Neimark AV, Shuth F, Unger KK (1995) Langmuir 11:4765CrossRefGoogle Scholar
  24. 24.
    Kruk M, Jaroniec M, Sayari A (1997) J Phys Chem B 101:583CrossRefGoogle Scholar
  25. 25.
    Luken W, Schmidt-Winkel P, Zhao D, Feng J, Stucky GD (1999) Langmuir 15:5403CrossRefGoogle Scholar
  26. 26.
    Trong OD, Kaliaguine S (2003) J Am Chem Soc 125:618CrossRefGoogle Scholar
  27. 27.
    Kruk M, Jaroniec M, Ko C, Ryoo R (2000) Chem Mater 12:1961CrossRefGoogle Scholar
  28. 28.
    Huo Q, Leon R, Petroff PM, Stucky GD (1995) Science 268:1324CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of New BrunswickFrederictonCanada
  2. 2.Department of Chemical EngineeringUniversity of OttawaOttawaCanada
  3. 3.State Key Lab of Pulp & Paper Eng.South China University of TechnologyGuangzhouChina

Personalised recommendations