Advertisement

Journal of Materials Science

, Volume 42, Issue 11, pp 3778–3782 | Cite as

Observation of an ultraviolet emission band in TiO2 nanocrystals doped with Eu3+

  • Q. G. ZengEmail author
  • Z. J. Ding
  • Z. M. Zhang
Article

Abstract

The photoluminescence spectra of titanium dioxide (TiO2) nanocrystals doped with Eu3+ (molar ratio Eu3+/TiO2 = 0, 1, 2, 4%) are investigated under different excitation wavelengths. An ultraviolet band of emission energy higher than the energy gap is found for excitation wavelengths larger than 315 nm when the Eu3+ content is higher than 2%. The new emission band redshifts and its emission intensity is intensified with the increase of excitation wavelength. The emission mechanism for the new ultraviolet emission band is analyzed.

Keywords

TiO2 Excitation Wavelength Emission Band Anatase TiO2 Indirect Transition 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 10574121 and 10025420), Natural Science Foundation of Anhui Province of China (Grant No. 05021015), Chinese Education Ministry and Chinese Academy of Sciences.

References

  1. 1.
    Linsebigler AL, Lu G, Yates JT Jr (1995) Chem Rev 95:735CrossRefGoogle Scholar
  2. 2.
    Ting CC, Chen SY, Hsieh WF, Lee HY (2001) J Appl Phys 90:5564CrossRefGoogle Scholar
  3. 3.
    Hirendra NG, Soumyakanti A (2001) Langmuir 17:4129CrossRefGoogle Scholar
  4. 4.
    Gu F, Wang SF, Song CF, Lv MK, Qi YX, Zhou GJ, Xu D, Yuan DR (2003) Chem Phys Lett 372:451CrossRefGoogle Scholar
  5. 5.
    Liu Y, Claus RO (1997) J Am Chem Soc 119:5273CrossRefGoogle Scholar
  6. 6.
    Avelino C, Hermenegildo G, Maria TN, Emilio JP, Fernando R (2000) Chem Mater 12:3068CrossRefGoogle Scholar
  7. 7.
    Tang H, Berger H, Schmid PE, Levy F, Burri G (1993) Solid State Commun 87:847CrossRefGoogle Scholar
  8. 8.
    Lin J, Yu JC (1998) J Photochem Photobio A: Chem 116:63CrossRefGoogle Scholar
  9. 9.
    Zhang WF, Zhang MS, Yin Z, Chen Q (2000) Appl Phys B 70:261CrossRefGoogle Scholar
  10. 10.
    Harish P, Anjiana D, Raghunandan B, Roland AF (2002) J Mater Chem 12:1625CrossRefGoogle Scholar
  11. 11.
    Frindell KL, Bartl MH, Popitsch A, Stucky GD (2002) Angew Chem 114:1001CrossRefGoogle Scholar
  12. 12.
    Asahi R, Taga Y, Mannstadt W, Freeman AJ (2000) Phys Rev B 61:7459CrossRefGoogle Scholar
  13. 13.
    Daude N, Gout C, Jouanin C (1977) Phys Rev B 15:3229CrossRefGoogle Scholar
  14. 14.
    Serpone N, Lawless D, Khairutdinov R (1995) J Phys Chem 99:16646CrossRefGoogle Scholar
  15. 15.
    Chen QW, Zhu DL, Zhang YH (2000) Appl Phys Lett 77:854CrossRefGoogle Scholar
  16. 16.
    Chen QW, Li X, Zhang Y (2001) Chem Phys Lett 343:507CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Hefei National Laboratory for Physical Sciences at Microscale and Department of PhysicsUniversity of Science and Technology of ChinaHefeiP.R. China
  2. 2.Department of Mathematics and PhysicsWu Yi UniversityJiangmenP.R. China

Personalised recommendations