Advertisement

Journal of Materials Science

, Volume 42, Issue 11, pp 3878–3882 | Cite as

Effects of anodizing conditions on anodic alumina structure

  • Nai-Qin Zhao
  • Xiao-Xue Jiang
  • Chun-Sheng Shi
  • Jia-Jun Li
  • Zhi-Guo Zhao
  • Xi-Wen DuEmail author
Article

Abstract

In this paper, two-step anodization was used to obtain porous anodic alumina (PAA) films, which are widely used as the temples to fabricate nanomaterials. Effects of anodizing conditions such as anodizing voltage and the concentration of electrolyte on steady current density (Is) and anodic alumina structure were investigated for oxalic acid as an electrolyte. The result shows that Is is dependent on anodizing voltage exponentially. The relationship between the concentration of electrolyte and the pore diameter is almost linear, while there is no effect on inner-pore distance. At different anodizing voltage, the effect degree of the concentration of oxalic acid on the pore diameter is various. In oxalic acid electrolyte with given concentration matching with a specifically anodizing voltage, optimal nano-pores arrangements can be obtained. The higher voltage induces the collapse of thin inner wall and disordered alumina nanowires (ANWs) were formed.

Keywords

Pore Diameter Oxalic Acid Anodize Voltage Oxalic Acid Solution Porous Anodic Alumina 

References

  1. 1.
    Keller F, Hunter MS, Robinson DL (1953) J Electrochem Soc 100:411CrossRefGoogle Scholar
  2. 2.
    Masuda H, Fukuda K (1995) Science 268:1466CrossRefGoogle Scholar
  3. 3.
    Shingubara S, Okino O, Sakaue H et al (1997) Jpn J Appl Phys 36:7791CrossRefGoogle Scholar
  4. 4.
    Li AP, Muller F, Birner A et al (1998) J Appl Phys 84:6023CrossRefGoogle Scholar
  5. 5.
    Li AP, Muller F, Birner A et al (1999) J Vac Sci Technol A 17:1428CrossRefGoogle Scholar
  6. 6.
    Xu T, Zangari G, Metzger RM (2002) Nano Lett 2:37CrossRefGoogle Scholar
  7. 7.
    Masuda H, Yamada H, Saitoh M et al (1997) Appl Phys Lett 71:2770CrossRefGoogle Scholar
  8. 8.
    Zhao YC, Chen M, Zhang YN et al (2005) Mater Lett 59:40CrossRefGoogle Scholar
  9. 9.
    Wood GC, O’Sullivan JP (1970) Electro Acta 15:1685CrossRefGoogle Scholar
  10. 10.
    Thompson GE, Wood GC (1981) Nature (London) 290, 230Google Scholar
  11. 11.
    Parkhutik VP, Shershulsky VI (1992) J Phys D: Appl Phys 25:1258CrossRefGoogle Scholar
  12. 12.
    Masuda H, Hasegwa F, Ono S (1997) J Electrochem Soc 144:L127CrossRefGoogle Scholar
  13. 13.
    Patermarakis G, Moussoutzanis K (1995) J Electrochem Soc 142(3):737CrossRefGoogle Scholar
  14. 14.
    Patermarakis G, Moussoutzanis K (1995) Electrochim Acta 40(6):699CrossRefGoogle Scholar
  15. 15.
    Patermarakis G (1998) J Electroanal Chem 447:25CrossRefGoogle Scholar
  16. 16.
    Shawaqfeh AT, Baltus RE (1998) J Electrochem Soc 145(8):2699CrossRefGoogle Scholar
  17. 17.
    Shingubara S (2003) J Nano Res 5:17CrossRefGoogle Scholar
  18. 18.
    Mei YF, Siu GG, Fu RKY et al (2005) J Appl Phys 97Google Scholar
  19. 19.
    Zhao YC, Chen M, Xu T et al (2005) Coll Surf (A): Physchem Eng 257–258:363CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Nai-Qin Zhao
    • 1
  • Xiao-Xue Jiang
    • 1
  • Chun-Sheng Shi
    • 1
  • Jia-Jun Li
    • 1
  • Zhi-Guo Zhao
    • 1
  • Xi-Wen Du
    • 1
    Email author
  1. 1.School of Materials Science & EngineeringTianjin UniversityTianjinChina

Personalised recommendations