Advertisement

Journal of Materials Science

, Volume 42, Issue 10, pp 3465–3476 | Cite as

A review of sealing technologies applicable to solid oxide electrolysis cells

  • Paul A. Lessing
Review

Abstract

This article reviews designs and materials investigated for various seals in high temperature solid oxide fuel cell “stacks” and how they might be implemented in solid oxide electrolysis cells that decompose steam into hydrogen and oxygen. Materials include metals, glasses, glass–ceramics, cements, and composites. Sealing designs include rigid seals, compressive seals, and compliant seals.

Keywords

B2O3 Solid Oxide Fuel Cell Yttria Stabilize Zirconia Ferritic Stainless Steel Pacific Northwest National Laboratory 

Notes

Acknowledgement

This work was supported by the U.S. Department of Energy Office of Nuclear Energy Science and Technology, under DOE-NE Idaho Operations Office Contract DE-AC07-05ID14517.

References

  1. 1.
    Hinao R et al (2004) Nuclear Eng Design 233:363CrossRefGoogle Scholar
  2. 2.
    Quandt KH, Streicher R (1986) Int J Hydrogen Energy 11:309CrossRefGoogle Scholar
  3. 3.
    Iwahara H et al (2004) Solid State Ionics 168(3–4):299–310CrossRefGoogle Scholar
  4. 4.
    O’Brien JE, Herring JS, Lessing PA, Stoots CM (2003) Presented at the first international conference on fuel cell science, engineering and technology, Rochester, NY, April 21–23, 2003Google Scholar
  5. 5.
    Herring JS, O’Brien JE, Stoots C, Lessing PA (2004) Paper 4322, 2004 international congress on advances in nuclear power plants (CAPP ‘04), Pittsburgh, Pa, June 13–17, 2004Google Scholar
  6. 6.
    Singh RN (2004) In: Lara-Curzio E, Readey MJ (eds) 28th international conference on advanced ceramics and composites, vol 25, no. 3, Cocoa Beach, FL, pp 299–307Google Scholar
  7. 7.
    Lewinsohn CA, Elangovan S, Quist SM (2004) In: Lara-Curzio E, Readey MJ (eds) 28th international conference on advanced ceramics and composites vol 25, no. 3, Cocoa Beach, FL, pp 315–320Google Scholar
  8. 8.
    Fergus JW (2005) J Power Sources 147:46CrossRefGoogle Scholar
  9. 9.
    Weil KS, Coyle CA, Hardy JS, Kim JY, Xia G-G (2004) Fuel Cells Bulletin, May 2004, pp 11–16Google Scholar
  10. 10.
    Jian SP et al (2002) J Eur Ceram Soc 22:361CrossRefGoogle Scholar
  11. 11.
    Kofstad P, Bredesen R (1992) Solid State Ionics 52:69CrossRefGoogle Scholar
  12. 12.
    Yang SG et al (2003) Adv Mater Process 161(6):34Google Scholar
  13. 13.
    Yang ZG (2003) et al Presented at the SECA CTP (DOE) Review Meeting, Albany, NY, September 30, 2003Google Scholar
  14. 14.
    Windes WE, Lessing PA (2003) In: Eighth international symposium of solid oxide fuel cells (SOFC VIII), 203rd Meeting of the electrochemical society, Paris, France, April 27–May 2, 2003Google Scholar
  15. 15.
    Windes WE, Lessing PA (2003) In: Eighth international symposium of solid oxide fuel cells (SOFC VIII), 203rd Meeting of the electrochemical society, Paris, France, April 27–May 2, 2003Google Scholar
  16. 16.
    (1974) Elements of ceramics, 2nd edn. F.H. Norton, Addison-Wesley Publishing Co, 168 ppGoogle Scholar
  17. 17.
    Larsen PH et al (1995) Proc. 4th Int. Symp. Solid Oxide Fuel Cells, vol 95-1, pp 69–78Google Scholar
  18. 18.
    Yang ZG, Weil KS, Meinhardt KD, Stevenson JW, Paxton DM, Xia GG, Kim DS (2002) In: Indacochea JE, DuPont JN, Lienert TJ, Tillmann W, Sobczak N, Gale WF, Singh M (eds) Joining of advanced and speciality materials V. ASM International, Materials Park, OH, USA, pp 116–124Google Scholar
  19. 19.
    Ley KL et al (1996) J Mater Res 11(6):1489CrossRefGoogle Scholar
  20. 20.
    Meinhardt KD et al (2002) Glass–ceramic materials and method of making. U.S. Patent No. 6,430,966 B1, Aug. 13, 2002Google Scholar
  21. 21.
    Meinhardt KD et al (2003) Glass–ceramic joint and method of joining. U.S. Patent No. 6,532,769 B1, Mar. 18, 2003Google Scholar
  22. 22.
    Lahl N et al (2000) J Mater Sci 35:3089CrossRefGoogle Scholar
  23. 23.
    Howard PJ, Pyke SH, Wood A (2000) Mat Tech Adv Perf Mat 15.1:6 Matrice Technology Ltd., UKGoogle Scholar
  24. 24.
    Personal Communication, Mr. Paul J. Howard, Programme Manager—Materials, Areva, T&D Center, St. Leonard’s Avenue, Stafford ST17 4LX, UKGoogle Scholar
  25. 25.
    Personal Communication, Mr. Stephen H. Pike, Rolls-Royce Fuel Cell Systems, Ltd, Charnwood Building, Holywell Park, Ashby Road, Loughborough LE11 3GR, UKGoogle Scholar
  26. 26.
    Lahl N et al In: Solid oxide fuel cells, vol VI. Electrochemical society proceedings, vol 99-19, pp 1057–1066Google Scholar
  27. 27.
    Lahl N et al (2000) J Mater Sci 35:3089CrossRefGoogle Scholar
  28. 28.
    Eichler K et al (2000) In: Proc. 4th European SOFC Forum, pp 899–906Google Scholar
  29. 29.
    Yang Z et al (2003) J Electrochem Soc 150(8):A1095CrossRefGoogle Scholar
  30. 30.
    Reis ST, Zhang T, Brow RK (2005) SECA Core Technology Peer Review Workshop (U.S. Dept. of Energy), Tampa, Fl, Jan. 27–28, 2005Google Scholar
  31. 31.
    Bram M et al (2002) In: Huijsmans J (ed) Proceedings of the fifth European solid oxide fuel cell forum, 1–5 July 2002, Lucerne, Switzerland, pp 847–854Google Scholar
  32. 32.
    Reckers S et al (2002) In: Huijsmans J (ed) Proceedings of the fifth European solid oxide fuel cell forum, 1–5 July 2002, Lucerne, Switzerland, 2002, pp 847–854Google Scholar
  33. 33.
    Chou YS, Stevenson JW (2003) J Power Sources 124:473CrossRefGoogle Scholar
  34. 34.
    Bram M et al (2004) J Power Sources 138:111CrossRefGoogle Scholar
  35. 35.
    Chou YS, Stevensen JW (2004) J Power Sources 135:72CrossRefGoogle Scholar
  36. 36.
    Chou YS, Stevenson JW (2005) J Power Sources 140:340CrossRefGoogle Scholar
  37. 37.
    Y-S M Chou, Stevenson JW, Singh P (2005) PNNL Presentation at SECA core technology program review, January 27–28, 2005, Tampa, FloridaGoogle Scholar
  38. 38.
    Duquette J, Petric A (2004) J Power Sources 137:71CrossRefGoogle Scholar
  39. 39.
    Stevenson J (2003) PNNL Presentation at SECA Core Technology Program—SOFC Seal Meeting, July 8, 2003, Sandia National Laboratory, Albuquerque, NMGoogle Scholar
  40. 40.
    Zhao ZB et al (1993) J Am Ceram Soc 76(10):2663CrossRefGoogle Scholar
  41. 41.
    Meier AM et al (1995) J Mater Sci 30(19):4781CrossRefGoogle Scholar
  42. 42.
    Weil KS, Coyle CA, Hardy JS, Kim JY, Xia G-G (2004) Fuel Cells Bulletin, May 2004, 14 ppGoogle Scholar
  43. 43.
    Kofstad P, Bredesen R (1992) Solid State Ionics 52:69CrossRefGoogle Scholar
  44. 44.
    Loehman R et al (2005) SECA Core Technology Program Review, January 27–28, 2005, Tampa, FLGoogle Scholar
  45. 45.
    Seabaugh MM, Emley B (2003) SECA Core Technology Program, SOFC Seal Meeting, July 7, 2003Google Scholar
  46. 46.
    Yamamoto T et al (1995) In: Proceedings of the fourth international symposium on solid oxide fuel cells (SOFC-IV), vol 95-1, The Electrochemical Society, pp 245–253Google Scholar
  47. 47.
    Loehman R et al (2005) SECA Core Technology Program Review, January 27–28, 2005, Tampa, FLGoogle Scholar
  48. 48.
    Weil KS, Coyle CA, Hardy JS, Kim JY, Xia G-G (2004) Fuel Cells Bulletin, May 2004, 15 ppGoogle Scholar
  49. 49.
    Wagh AS (2004) Chemically bonded phosphate ceramics. ElsevierGoogle Scholar
  50. 50.
    Lessing PA, Erickson AW (2003) J Eur Ceram Soc 23:3049CrossRefGoogle Scholar
  51. 51.
    Hikichi Y, Nomura T (1987) J Am Ceram Soc 70(10):C252CrossRefGoogle Scholar
  52. 52.
    Personal communication from Prof. K.K. Chawla, University of Alabama-Birmingham, March 21, 2005Google Scholar
  53. 53.
    Chawla KK et al (2000) J Eur Ceram Soc 20:551CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Materials DepartmentIdaho National LaboratoryIdaho FallsUSA

Personalised recommendations