Advertisement

Journal of Materials Science

, Volume 42, Issue 11, pp 3754–3760 | Cite as

Influence of calcination conditions on phase formation and particle size of indium niobate powders synthesized by the solid-state reaction

  • S. Wongsaenmai
  • R. Yimnirun
  • S. AnantaEmail author
Article

Abstract

A wolframite-type phase of indium niobate, InNbO4, has been synthesized by a solid-state reaction via a rapid vibro-milling technique. The formation of the InNbO4 phase in the calcined powders has been investigated as a function of calcination conditions by TG-DTA and XRD techniques. Morphology, particle size and chemical composition have been determined via a combination of SEM and EDX techniques. Single-phase InNbO4 powders have been obtained successfully for calcination condition of 900 °C for 4 h or 950 °C for 2 h with heating/cooling rates of 30 °C/min. Higher temperatures and longer dwell times clearly favoured particle growth and the formation of large and hard agglomerates.

Keywords

Calcination Dwell Time Calcination Temperature Mixed Oxide In2O3 

Notes

Acknowledgements

We thank the Thailand Research Fund (TRF) and the Commission on Higher Education (CHE), Graduate School and Faculty of Science, Chiang Mai University for all supports.

References

  1. 1.
    Keller C, Anorg Z (1962) Chem 318:89Google Scholar
  2. 2.
    Hulme JK (1953) Phys Res 92:504CrossRefGoogle Scholar
  3. 3.
    Brixner LH, Chen H-Y (1980) Mater Res Bull 15:607CrossRefGoogle Scholar
  4. 4.
    Zou Z, Ye J, Arakawa H (2000) Chem Phys Lett 332:271CrossRefGoogle Scholar
  5. 5.
    Zou Z, Ye J, Sayama K, Arakawa H (2001) Nature 414:625CrossRefGoogle Scholar
  6. 6.
    Ye J, Zou Z, Arakwa H, Oshikiri M, Shimoda M, Matsushita A, Shishido T (2002) J Photochem Photobiol A 148:79CrossRefGoogle Scholar
  7. 7.
    Zou Z, Arakawa H (2003) J Photochem Photobiol A 158:145CrossRefGoogle Scholar
  8. 8.
    Xu Y (1991) Ferroelectric materials and their applications. Elsevier Science, Amsterdam, The NetherlandsGoogle Scholar
  9. 9.
    Moulson AJ, Herbert JM (2003) Electroceramics, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  10. 10.
    Alberta EF, Bhalla AS (1996) Ferroelectrics 188:95CrossRefGoogle Scholar
  11. 11.
    Nomura K, Shingai T, Ishino S-I, Terauchi H, Yasuda N, Ohwa H (1999) J Phys Soc Jpn 68:39CrossRefGoogle Scholar
  12. 12.
    Park SS, Choo WK (1991) Ferroelectrics 118:117CrossRefGoogle Scholar
  13. 13.
    Alberta EF, Bhalla AS (2002) J Phys Chem Solids 63:1759CrossRefGoogle Scholar
  14. 14.
    Elissalde C, Weill F, Ravez J (1994) Mater Sci Eng B 25:85CrossRefGoogle Scholar
  15. 15.
    Yasuda N, Mizuno T (1995) Appl Phys Lett 66:571CrossRefGoogle Scholar
  16. 16.
    Lee KH, Lee SB, Kim H (2004) Ceram Int 30:1035CrossRefGoogle Scholar
  17. 17.
    Yasuda N, Inaguki H, Imamura S (1992) Jpn J Appl Phys 31:L574CrossRefGoogle Scholar
  18. 18.
    Iwata M, Katagiri S, Orihara H, Maeda M, Suzuki I, Ohwa H, Yasuda N, Ishibashi Y (2004) Ferroelectrics 301:179CrossRefGoogle Scholar
  19. 19.
    Ananta S, Tipakontitikul R, Tunkasiri T (2003) Mater Lett 57:2637CrossRefGoogle Scholar
  20. 20.
    Ananta S (2004) Mater Lett 58:2834CrossRefGoogle Scholar
  21. 21.
    Powder Diffraction File No. 71-2195 (2000) International Centre for Diffraction Data, Newton Square, PAGoogle Scholar
  22. 22.
    Powder Diffraction File No. 30-873 (2000) International Centre for Diffraction Data, Newton Square, PAGoogle Scholar
  23. 23.
    Powder Diffraction File No. 83-1780 (2000) International Centre for Diffraction Data, Newton Square, PAGoogle Scholar
  24. 24.
    Zou Z, Ye J, Arakawa H (2000) Chem Phys Lett 332:271CrossRefGoogle Scholar
  25. 25.
    Youmee P, Phanichphant S, Ananta S, Heimann RB (2001) Ceram Forum Int DKG 78:E48Google Scholar
  26. 26.
    Ananta S, Brydson R, Thomas NW (1999) J Eur Ceram Soc 19:489CrossRefGoogle Scholar
  27. 27.
    Tipakontitikul R, Ananta S (2004) Mater Lett 58:449CrossRefGoogle Scholar
  28. 28.
    Kim BC, Lee JH, Kim JJ, Ikegami T (2002) Mater Lett 52:114CrossRefGoogle Scholar
  29. 29.
    Powder Diffraction File No. 25-384 (2000) International Centre for Diffraction Data, Newton Square, PAGoogle Scholar
  30. 30.
    von Liebertz J (1972) Acta Crystallogr B 28:3100CrossRefGoogle Scholar
  31. 31.
    Powder Diffraction File No. 33-619 (2000) International Centre for Diffraction Data, Newton Square, PAGoogle Scholar
  32. 32.
    Reed JS (1995) Principles of ceramics processing, 2nd edn. Wiley, New YorkGoogle Scholar
  33. 33.
    Ananta S (2004) Mater Lett 58:2530CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceChiang Mai UniversityChiang MaiThailand

Personalised recommendations