Mechanism of geopolymerization and factors influencing its development: a review
- 7.4k Downloads
- 334 Citations
Abstract
Geopolymerization is a developing field of research for utilizing solid waste and by-products. It provides a mature and cost-effective solution to many problems where hazardous residue has to be treated and stored under critical environmental conditions. Geopolymer involves the silicates and aluminates of by-products to undergo process of geopolymerization. It is environmentally friendly and need moderate energy to produce. This review presents the work carried out on the chemical reaction, the source materials, and the factor affecting geopolymerization. Literature demonstrates that certain mix compositions and reaction conditions such as Al2O3/SiO2, alkali concentration, curing temperature with curing time, water/solid ratio and pH significantly influences the formation and properties of a geopolymer. It is utilized to manufacture precast structures and non-structural elements, concrete pavements, concrete products and immobilization of toxic metal bearing waste that are resistant to heat and aggressive environment. Geopolymers gain 70% of the final strength in first 3–4 h of curing.
Keywords
Zeolite Compressive Strength Portland Cement Geopolymer Sodium SilicateReferences
- 1.Woolard CD, Petrus K, Van Der Horst M (2000) ISSN 0378-4738-Water SA 26:531Google Scholar
- 2.Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV (2004) ACI Mater J 101:1Google Scholar
- 3.Baldwin G, P.E. Rushbrook, Dent CG (1982) The testing of hazardous waste to assess their suitability for landfill disposal. Harwell report, AERE-R10737, November 1982Google Scholar
- 4.Wiles CC (1988) Standard handbook of hazardous waste treatment and disposal. McGraw Hills, New York, p 7.85Google Scholar
- 5.Hermann E, Kunze C, Gatzweiler R, Kiebig G, Davitovits J (1999) In: Proceedings of Geopolymers, p 211Google Scholar
- 6.Buchwald A, Schulz M (2005) Cement Concrete Res 35:968CrossRefGoogle Scholar
- 7.Li Z, Ding Z, Zhang Y (2004) In: International workshop on sustainable development and concrete technology. Beijing, p 55Google Scholar
- 8.Davitovits J (1991) J Therm Anal 37:1633CrossRefGoogle Scholar
- 9.Xu H, Van Deventer JSJ (2000) Int J Miner Process 59:247CrossRefGoogle Scholar
- 10.Xiong CJ, Ban CH, Pei X, Fang Z (2004) In: International workshop on sustainable development and concrete technology. Beijing, p 299Google Scholar
- 11.Hos JP, Mccormick PG (2002) J Mater Sci 37:2311CrossRefGoogle Scholar
- 12.Alonso S, Palomo A (2001) Mater Lett 47:55CrossRefGoogle Scholar
- 13.Van Jaarsveld JGS, Van Deventer JSJ, Lukey GC (2002) Chem Eng J 89:63CrossRefGoogle Scholar
- 14.Van Jaarsveld JSG, Van Deventer JSJ, Lorenzen L (1998) Metal Mater Trans B 29:283CrossRefGoogle Scholar
- 15.Davidovits J, Sawyer JL (1985) US Patent, No. 4509985Google Scholar
- 16.Van Jaarsveld JGS, Van Deventer JSJ, Lorenzen L (1997) Miner Eng 10:659CrossRefGoogle Scholar
- 17.Xu H, Van Deventer JSJ, (2002) Cement Concrete Res 32:1705CrossRefGoogle Scholar
- 18.Van Jaarsveld JGS, Van Deventer JSJ, Lukey GC (2003) Mater Lett 57:1272CrossRefGoogle Scholar
- 19.Phair JW, Van Deventer JSJ, Smith JD (2004) Appl Sci 19:432Google Scholar
- 20.Van Jaarsveld JGS, Van Deventer JSJ, Schwartzman A (1999) Miner Eng 12:75CrossRefGoogle Scholar
- 21.Phair JW, Van Deventer JSJ (2001) Miner Eng 14:289CrossRefGoogle Scholar
- 22.Phair JW, Van Deventer JSJ, Smith JD (2000) Eng Chem Res 39:2925CrossRefGoogle Scholar
- 23.Xu H, Van Deventer JSJ (2002) Miner Eng 15:1131CrossRefGoogle Scholar
- 24.Feng D, Tan H, Van Deventer JSJ (2004) J Mater Sci 39:571CrossRefGoogle Scholar
- 25.Lee WKW, Van Deventer JSJ (2002) Ind Eng Chem Res 41:4550CrossRefGoogle Scholar
- 26.Phair JW, Smith JD, Van Deventer JSJ (2003) Mater Lett 57:4356CrossRefGoogle Scholar
- 27.Yip CK, Van Deventer JSJ (2003) J Mater Sci 38:3851CrossRefGoogle Scholar
- 28.Rees C, Lukey GC, Van Deventer JSJ (2004) In: International symposium of research students on material science and engineering. December 2004, IIT Chennai IndiaGoogle Scholar
- 29.Duxson P, Lukey GC, Van Deventer JSJ (2005) Ind Eng Chem Res 44:832CrossRefGoogle Scholar
- 30.Hardjito D, Wallah SE, D.M.J Sumajouw, Rangan BV (2003) In: George Hoff Symposium, ACI, Las Vegas USAGoogle Scholar
- 31.Palomo A, Glasser FP (1992) Brit Ceram Trans J 91:107Google Scholar
- 32.Davitovits J, Davitovits M, Davitovits N (1994) US Patent, No. 5,342,595Google Scholar
- 33.Sabir BB, Wild S, Bai J (2001) Cement Concrete Res 23:441CrossRefGoogle Scholar
- 34.Jimenez AF, Palomo A (2003) Fuel 82:2259CrossRefGoogle Scholar
- 35.Terzano R, Spagnuolo M, Medicu L, Vekemans B, Vincze L, Janssens K, Ruggiero P (2005) Environ Sci Technol 39:6280CrossRefGoogle Scholar
- 36.Sumajouw DMJ, Hardjito D, Wallah SE, Rangan BV (2004) In: Green Processing 2004. The Australian Institute of Mining and Metallurgy, Fremantle, Western Australia, p 237Google Scholar
- 37.Hewlette PC (ed) (1998) In: Lea’s Chemistry of Cement and Concrete, 4th ed. Butterworth Heinmann, New Delhi, p 480Google Scholar
- 38.Papadakis VG (2000) Cement Concrete Res 30:1647CrossRefGoogle Scholar
- 39.Moropoulou A, Cakmak A, Labropoulos KC, Van Grieken R, Torfs K (2004) Cement Concrete Res 34:1CrossRefGoogle Scholar
- 40.Conner JR (1990) Chemical fixation and solidification of hazardous waste. Van Nostrand Reinhold, New York, p 335Google Scholar
- 41.Spencer RD (ed) (1993) In: Chemistry of cement solidified waste forms. Lewis publishers, New York, p 3Google Scholar
- 42.Palomo A, Grutzeck MW, Blanco MT (1999) Cement Concrete Res 29:1323CrossRefGoogle Scholar
- 43.Gourley JT (2003) In: CRC for sustainable resource proceeding materials conferenceGoogle Scholar
- 44.Kaps CH, Buchwald A (2002) In: Geopolymer 2002, Melbourne, AustraliaGoogle Scholar
- 45.Wu Z, Naik TR (2004) In: ACI International spring Washington, DC 2004 centennial convention Report No. CBU-2004-06Google Scholar
- 46.El-Hosiny F (2002) Ceram-Silikaty 46:63Google Scholar
- 47.Brooks JJ (2002) ACI Mater J 99:591Google Scholar
- 48.Lange LC, Hills CD, Poole AB (1996) Waste Manage 16:757CrossRefGoogle Scholar
- 49.Yang CGC, Chen SY (1994) J Hazard Mater 39:317CrossRefGoogle Scholar
- 50.Mangialardi T, Paolini AE, Polettini A, Sirini P (1999) J Hazard Mater B 70:53CrossRefGoogle Scholar
- 51.Lombardi F, Mangialardi T, Piga L, Sirini P (1998) Waste Manage 18:99CrossRefGoogle Scholar
- 52.Swanepoel JC, Syrtdom CA (2002) Appl Geochem 17:1143CrossRefGoogle Scholar
- 53.Wang K, Shah SP, Mishulovich A (2004) Cement Concrete Res 34:299CrossRefGoogle Scholar
- 54.Puertas F, Martinez-Ramirez S, Alonso S, Vazquez T (2000) Cement Concrete Res 30:1625CrossRefGoogle Scholar
- 55.Atkins M, Glasser FP, Jack JJ (1995) Waste Manage 15:127CrossRefGoogle Scholar
- 56.Kirschner A, Harmuth H (2004) Ceram-Silikaty 48:117Google Scholar
- 57.Palomo A, Alonso S, Jimenez AF (2004) J Am Soc 87:1141Google Scholar
- 58.Bakharev T (2005) Cement Concerete Res 35:1224CrossRefGoogle Scholar
- 59.Ramlochan T, Zacarias P, Thoas MDA, Hooton RD (2003) Cement Concrete Res 33:807CrossRefGoogle Scholar
- 60.Cioffi R, Maffucci L, Santoro L (2003) Resour Conserv Recy 40:27CrossRefGoogle Scholar
- 61.Martinez-Ramirez S, Palomo A (2001) Cement Concrete Res 31:1581CrossRefGoogle Scholar
- 62.Palomo A, Lopez de la Fuente JI (2003) Cement Concrete Res 33:281CrossRefGoogle Scholar
- 63.Cheng TW, Chin JP (2003) Miner Eng 16:205CrossRefGoogle Scholar
- 64.Rahier H, Simons W, Van Mele B (1997) J Mater Sci 32:2237CrossRefGoogle Scholar
- 65.Gasteiger HA, Frederik WJ, Streise RC (1992) Ind Eng Chem Res 31:1183CrossRefGoogle Scholar
- 66.Poon CS, Azhar S, Anson M, Wong YL (2003) Cement Concrete Comp 25:83CrossRefGoogle Scholar
- 67.Querol X, Alastuey A, Turiel JLF, Soler AL (1995) Fuel 74:1226CrossRefGoogle Scholar
- 68.Yip CK, Lukey GC, Van Deventer JSJ (2005) Cement Concrete Res 35:1688CrossRefGoogle Scholar
- 69.Roy A, Schilling PJ, Eaton HC. US Patent, No. 5435843Google Scholar
- 70.Courard L, Darimont A, Schouterden M, Ferauche F, Willem X, Degeimbre R (2003) Cement Concrete Res 33:1473CrossRefGoogle Scholar
- 71.Zang S, Gong K, Lu J (2004) Mater Lett 53:1292CrossRefGoogle Scholar
- 72.Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV (2004) In: Seventh CANMET/ACI international conference on recent advances in concrete technology. May 2004 Las Vegas USAGoogle Scholar
- 73.Palomo A, Jimenez AF, Criado M (2004) Mater Construct 54:77CrossRefGoogle Scholar
- 74.Mohammadi T, Pak A (2003) Sep Purif Technol 30:241CrossRefGoogle Scholar
- 75.Madani A, Aznar A, Sanz J, Serratosa JM (1990) J Phys Chem-US 94:760CrossRefGoogle Scholar
- 76.Hanzlicek T, Vondrakova MS (2002) Ceram-Silikaty 46:97Google Scholar
- 77.Palomo A, Palacios A (2003) Cement Concrete Res 33:289CrossRefGoogle Scholar
- 78.Wallah SE, Hardjito D, Sumajouw DMJ, Rangan BV (2004) In: International conference on fiber composites, high-performance concretes and smart material. ICFRC, ChennaiGoogle Scholar
- 79.Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV (2004) In: 18th Australasian conference on the mechanics of structures and materials (ACMSM)1-3. Perth AustraliaGoogle Scholar
- 80.Davitovits J (1994) Concrete Int 16:53Google Scholar
- 81.Bai J, Wild S, Sabir BB (2002) Cement Concrete Res 32:1813CrossRefGoogle Scholar
- 82.Rowles M, Conner B (2003) J Mater Chem 13:1161CrossRefGoogle Scholar
- 83.Alonso S, Palomo A (2001) Cement Concrete Res 31:25CrossRefGoogle Scholar
- 84.Brough AR, Katz A, Sun GK, Struble LJ, Kirkpatrick RJ, Young JF (2001) Cement Concrete Res 31:1437CrossRefGoogle Scholar
- 85.Puertas F, Jimenez AF, Blanco-Varela MT (2004) Cement Concrete Res 34:139CrossRefGoogle Scholar
- 86.La Lglesia A, Gonzalez MV, Dufour J (2002) Environ Prog 21:105CrossRefGoogle Scholar