Advertisement

Journal of Materials Science

, Volume 42, Issue 10, pp 3580–3587 | Cite as

Synthesis and microstructure of SrTiO3 and BaTiO3 ceramics by a reaction-sintering process

  • Yi-Cheng LiouEmail author
  • Chi-Ting Wu
  • Tzu-Chin Chung
Article

Abstract

Strontium titanate and barium titanate ceramics prepared by a reaction-sintering process were investigated. The mixture of raw materials of stoichiometric SrTiO3 and BaTiO3 was pressed and sintered into ceramics without any calcination stage involved. A density 4.99 g/cm3 (97.5% of the theoretic value) was found in SrTiO3 after 6 h sintering at 1,370 °C. Grains less than 1.5 μm were formed at 1,300–1,330 °C and became 2.2–3.3 μm at 1,350–1,370 °C SrTiO3. A density 5.89 g/cm3 (97.9% of the theoretic value) was found in BaTiO3 after 6 h sintering at 1,400 °C. Merged grains were observed in BaTiO3 and were less than 10 μm after sintered at 1,400 °C.

Keywords

BaTiO3 Sinter Temperature Barium Titanate Strontium Titanate Positive Temperature Coefficient 

Notes

Acknowledgements

The authors are grateful to Miss Shi-Yuea Hsu for her help in obtaining the SEM photos.

References

  1. 1.
    Saito H, Chazono H, Kishi H, Yamaoka N (1991) Jpn J Appl Phys 30:2307CrossRefGoogle Scholar
  2. 2.
    Hennings D, Rosenstein G (1984) J Am Ceram Soc 67:249CrossRefGoogle Scholar
  3. 3.
    Huybrechts B, Ishizaki K, Takata M (1995) J Mater Sci 30:2463CrossRefGoogle Scholar
  4. 4.
    Yamaoka N, Masuyama M, Fuki M (1983) Am Ceram Bull 62:698Google Scholar
  5. 5.
    Liou JW, Chiou BS (1997) Mater Chem Phys 51:59CrossRefGoogle Scholar
  6. 6.
    Takemura K, Sakuma T, Miyasaka Y (1994) Appl Phys Lett 64:2967CrossRefGoogle Scholar
  7. 7.
    Kawahara T, Yamamuka M, Yuuki A, Ono K (1995) Jpn J Appl Phys 33:5077CrossRefGoogle Scholar
  8. 8.
    Wu L, Chen YC, Chen LJ, Chou YP, Tsai YT (1999) Jpn J Appl Phys 38:5612CrossRefGoogle Scholar
  9. 9.
    Aoyama T, Yamazaki S, Imai K (2000) Jpn J Appl Phys 39:6348CrossRefGoogle Scholar
  10. 10.
    Lim SS, Han MS, Hahn SR, Lee SG (2000) Jpn J Appl Phys 39:4835CrossRefGoogle Scholar
  11. 11.
    Chang HY, Liu KS, Lin IN (1996) J Eur Ceram Soc 16:63CrossRefGoogle Scholar
  12. 12.
    Hennings D (1989) Br Ceram Proc 41:1Google Scholar
  13. 13.
    Pinceloup P, Courtois C, Leriche A, Thierry B (1999) J Am Ceram Soc 82:3049CrossRefGoogle Scholar
  14. 14.
    Kumar V (1999) J Am Ceram Soc 82:2580CrossRefGoogle Scholar
  15. 15.
    Gomez-Yanez C, Benitez C, Balmori-Ramirez H (2000) Ceram Int 26:271CrossRefGoogle Scholar
  16. 16.
    Kong LB, Ma J, Huang H, Zhang RF, Que WX (2002) J Alloys Comp 337:226CrossRefGoogle Scholar
  17. 17.
    Wang J, Wan DW, Xue JM, Ng WB (1998) Singapore Patent No. 9801566-2Google Scholar
  18. 18.
    Hamada K, Senna M (1996) J Mater Sci 31:1725CrossRefGoogle Scholar
  19. 19.
    Lee SE, Xue JM, Wan DW, Wang J (1999) Acta Mater 47(9):2633CrossRefGoogle Scholar
  20. 20.
    Kong LB, Ma J (2001) Mater Lett 51:95CrossRefGoogle Scholar
  21. 21.
    Liou YC, Tseng KH, Yu CH (2001) Proceedings of the 2001 annual Conference of the Chinese Society for Materials Science, 23–24 November 2001, National Chung Hsing University, Taichung, Taiwan, P03–09Google Scholar
  22. 22.
    Liou YC, Tseng KH, Yu CH (2001) Proceedings of the 2001 annual Conference of the Chinese Society for Materials Science, 23–24 November 2001, National Chung Hsing University, Taichung, Taiwan, P03–17Google Scholar
  23. 23.
    Liou YC, Shih CY, Yu CH (2001) Proceedings of the 2001 annual Conference of the Chinese Society for Materials Science, 23–24 November 2001, National Chung Hsing University, Taichung, Taiwan, P03–102Google Scholar
  24. 24.
    Chen JH, Liou YC, Tseng KH (2003) Jpn J Appl Phys 42(1A):175CrossRefGoogle Scholar
  25. 25.
    Liou YC, Shih CY, Yu CH (2003) Mater Lett 57:1977CrossRefGoogle Scholar
  26. 26.
    Liou YC (2004) J Electroceram 12:187CrossRefGoogle Scholar
  27. 27.
    Liou YC (2004) J Electroceram 13:453CrossRefGoogle Scholar
  28. 28.
    Liou YC, Shih YC, Chuang CJ (2004) J Electroceram 13:457CrossRefGoogle Scholar
  29. 29.
    Liou YC, Huang YC (2003) Proceedings of the 2003 annual Conference of the Chinese Society for Materials Science, 21–22 November 2003, Kun-Shan University, Tainan Hsien, TaiwanGoogle Scholar
  30. 30.
    Liou YC, Chen JH, Shih YC (2003) Proceedings of the 2003 annual Conference of the Chinese Society for Materials Science, 21–22 November 2003, Kun-Shan University, Tainan Hsien, TaiwanGoogle Scholar
  31. 31.
    Liou YC, Chuang CJ, Shih YC (2005) Mater Chem Phys 93(1):26CrossRefGoogle Scholar
  32. 32.
    Liou YC, Wu CT, Tseng KH, Chung TC (2005) Mater Res Bull 40(9):1483CrossRefGoogle Scholar
  33. 33.
    Liou YC, Shiue CY (2005) Mater Res Soc Symp Proc 848:115Google Scholar
  34. 34.
    Liou YC, Chen JH, Wu CT (2005) Mater Res Soc Symp Proc 848:103Google Scholar
  35. 35.
    Kao CF, Yang WD (1996) Ceram Int 22:57CrossRefGoogle Scholar
  36. 36.
    Zhi Y, Chen A (2003) J Mater Sci 38:113CrossRefGoogle Scholar
  37. 37.
    Caballero AC, Fernandez JF, Moure C, Duran P, Fierro JLG (1997) J Eur Ceram Soc 17:513CrossRefGoogle Scholar
  38. 38.
    Choi SY, Kang SJL (2004) Acta Mater 52:2937CrossRefGoogle Scholar
  39. 39.
    Hennings DFK (1984) Sci Ceram 2:405Google Scholar
  40. 40.
    Hennings DFK, Janssen R, Reynen PJL (1987) J Am Ceram Soc 70:23CrossRefGoogle Scholar
  41. 41.
    Lee HY, Kim JS, Hwang NM, Kim DY (2000) J Eur Ceram Soc 20:731CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Electronic EngineeringKun-Shan UniversityTainan HsienTaiwan, ROC

Personalised recommendations