Advertisement

Journal of Materials Science

, Volume 42, Issue 10, pp 3477–3487 | Cite as

Materials for hydrogen generation via water electrolysis

  • Paul A. LessingEmail author
Review

Abstract

A review is presented of materials that could be utilized as electrolytes (and their associated electrodes and interconnect materials) in solid-state electrolysis cells to convert water (or steam) into hydrogen and oxygen. Electrolytes that function as oxygen ion conductors or proton conductors are considered for various operating temperatures from approximately 80 °C to 1000 °C. The fundamental electrochemical reactions are reviewed with some discussion of special sources of steam and DC electricity (advanced nuclear) to drive the reactions at the higher temperatures.

Keywords

Fuel Cell CeO2 Bi2O3 Pressure Swing Adsorption Lanthanum Chromite 

Notes

Acknowledgements

This work was supported by the U.S. Department of Energy Office of Nuclear Energy Science and Technology, under DOE-NE Idaho Operations Office Contract DE-AC07-05ID14517.

References

  1. 1.
    Subbarao E, Maiti HS (1984) Solid State Ionics 11:317Google Scholar
  2. 2.
    Kilner JA, Brook RJ (1982) Solid State Ionics 6:237Google Scholar
  3. 3.
    USGS, Yr 2000 data: Sc2O3 (99.99% pure) $3,000/kg, Sc2O3 (99.9%) pure $700/kg; Y2O3 (99.99% pure) $200/kgGoogle Scholar
  4. 4.
    Ciachi FT, Badwal SP (1991) J Eur Ceramic Soc 7:197Google Scholar
  5. 5.
    Singhal SC (2000) MRS Bull 25(3):16Google Scholar
  6. 6.
    Anderson HU, Nasrallah MM (1993) Characterization of oxide for electrical delivery systems, An EPRI/GRI Fuel Cell Workshop on Fuel Cell Technology Research and Development, New Orleans, LA, April 13–14Google Scholar
  7. 7.
    Misuyasu H et al (1997) Solid State Ionics 100(1–2):11Google Scholar
  8. 8.
    Doenitz W et al (1980) Int J Hydrogen Energy 5:55Google Scholar
  9. 9.
    Doenitz W, Schmidberger R (1982) Int J Hydrogen Energy 7:321Google Scholar
  10. 10.
    Doenitz W (1984) Int J Hydrogen Energy 9:817Google Scholar
  11. 11.
    Doenitz W, Erdle E (1985) Int J Hydrogen Energy 10:291Google Scholar
  12. 12.
    Doenitz W et al (1988) Int J Hydrogen Energy 13:283Google Scholar
  13. 13.
    Quandt KH, Streicher R (1986) Int J Hydrogen Energy 11:309Google Scholar
  14. 14.
    Erdle E et al (1992) Int J Hydrogen Energy 17:817Google Scholar
  15. 15.
    Hino R, Miyamoto Y (1994) Hydrogen production by high-temperature electrolysis of steam, chapter in High temperature applications of nuclear energy. Proceedings of a Technical Committee meeting held in Oarai, Japan, 19–20 October 1992, International Atomic Energy Agency Report IAEA-TECDOC-76, August 1994, pp 119–124Google Scholar
  16. 16.
    Herring JS, Anderson R, Lessing PA, O’Brien JE, Stoots CM, Hartvigsen JJ, Elangovan S (2004) Hydrogen production through high-temperature electrolysis in a solid oxide cell. National Hydrogen Association 15th Annual Conference, Los Angeles, April 26–29, 2004Google Scholar
  17. 17.
    O’Brien JE, Stoots CM, Herring JS, Lessing PA (2004) Characterization of solid-oxide electrolysis cells for hydrogen production via high-temperature steam electrolysis. Paper #2474, 2nd International Conference on Fuel Cell Science, Engineering, and Technology, June 14–16, 2004, Rochester, NYGoogle Scholar
  18. 18.
    Eguchi K et al (1996) J Electrochem Soc 143(11):3699Google Scholar
  19. 19.
    Hino R et al (2004) Nuclear Eng Design 233:363Google Scholar
  20. 20.
    Herring JS, O’Brien JE, Stoots CM, Lessing PA, Anderson RP, Hartvigsen JJ, Elangovan S (2004) Hydrogen production from nuclear energy via high-temperature electrolysis. Paper # 4322, 2004 International Conference on Advances in Nuclear Power Plants (ICAPP’04), June 13–17, 2004, Pittsburgh, PAGoogle Scholar
  21. 21.
    Herring JS, O’Brien JE, Stoots CM, Lessing PA, Anderson RP, Hartvigsen JJ, Elangovan S (2004) Hydrogen production through high-temperature electrolysis using nuclear power. AIChE Spring National Meeting, New Orleans, April 25–29, 2004Google Scholar
  22. 22.
    Very High Temperature Reactor (VHTR) Survey of Materials Research and Development Needs to Support Early Deployment, INEEL/EXT-03-004 = 141, January 31, 2003Google Scholar
  23. 23.
    Ion S et al (2004) Nuclear Energy. J Brit Nucl Energy Soc 43:55Google Scholar
  24. 24.
    A Technology Roadmap for Generation IV Nuclear Energy Systems, GIF-002-00, U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002Google Scholar
  25. 25.
    Singhal SC (2000) MRS Bull 25:16Google Scholar
  26. 26.
    Doshi R et al (1999) Solid state devices based on thin-film zirconia electrolytes. In: Wachsman ED, Akridge JR, Liu M, Yamazoe N (eds) Solid-state ionic devices, Proceedings of the International Symposium, Electrochemical Society Proceedings Vol. 99–13, pp 268–275Google Scholar
  27. 27.
    Minh NQ (1993) J Am Ceram Soc 76(3):563Google Scholar
  28. 28.
    Minh NQ et al (1993) Tape-calendared monolithic and flat plate solid oxide fuel cells. In: Singhal SC, Iwahara H (eds) Proceedings of the Third International symposium on Solid Oxide Fuel Cells, pp 801–801Google Scholar
  29. 29.
    Guan J et al (2002) J Am Ceram Soc 85(11):2651Google Scholar
  30. 30.
    Liu J, Barnett SA (2002) J Am Ceram Soc 85(12):3096Google Scholar
  31. 31.
    Egger P et al (2005) J Eur Ceram Soc 25:2467Google Scholar
  32. 32.
    Rambert S et al (1999) J Eur Ceram Soc 19:921Google Scholar
  33. 33.
    Henne RH et al (2004) Light-weight SOFCs for automotive auxiliary power units. 2nd International Conference on Fuel Cell Science, Engineering and Technology, Rochester, NY, USA, June 14–16, 2004Google Scholar
  34. 34.
    Wang LS et al (1992) Solid State Ionics 52:261Google Scholar
  35. 35.
    Chu WF (1992) Solid State Ionics 52:243Google Scholar
  36. 36.
    Windes WE, Lessing PA (2002) Plasma spray coatings for SOFC, 2002 Fuel Cell Seminar Abstracts, 471–474, Courtesy Associates, 2025 M Street, N.W., Suite 800, Washington D.C. 20036Google Scholar
  37. 37.
    Pal UB (1992) Solid State Ionics 52:227Google Scholar
  38. 38.
    Chen TY, Fung KZ (2004) J Alloys Comp 368(1–2):106Google Scholar
  39. 39.
    Kurumada M, Ito A, Fujie Y (2003) J Ceram Soc Jpn 111(3):200Google Scholar
  40. 40.
    Choi SM et al (2000) Solid State Ionics 131(3–4):221Google Scholar
  41. 41.
    Kharton VV et al (2000) Solid State Ionics 128(1–4):79Google Scholar
  42. 42.
    Maffei N, de silveira G (2003) Solid State Ionics 159(3–4):209Google Scholar
  43. 43.
    Kim JH, Yoo HI (2001) Solid State Ionics 140(1–2):105Google Scholar
  44. 44.
    Zhang XG et al (2001) Solid State Ionics 139(1–2):145Google Scholar
  45. 45.
    Majkic G et al (2002) Solid State Ionics 146(3–4):393Google Scholar
  46. 46.
    Kostogloudis GC et al (2000) Solid State Ionics 134(1–2):127Google Scholar
  47. 47.
    Zhang XG et al (2000) Solid State Ionics 133(3–4):153Google Scholar
  48. 48.
    Wang SZ (2004) Acta Physico-Chimica Sinica 20(1):43Google Scholar
  49. 49.
    Kuroda K et al (2000) Solid State Ionics 132(3–4):199Google Scholar
  50. 50.
    Ma X et al (2004) Ceramic Industry 25–28Google Scholar
  51. 51.
    Pengnian H et al (1999) J Am Ceram Soc 82(9):2402Google Scholar
  52. 52.
    Maffei N, de Silveira G (2003) Solid State Ionics 159(3–4):209Google Scholar
  53. 53.
    Huang KG et al (2001) J Electrochem Soc 148(7):A788Google Scholar
  54. 54.
    Wang SZ, Tatsumi I (2003) Acta Physico-Chimica Sinica 19(9):844Google Scholar
  55. 55.
    Huang KQ et al (1997) J Electrochem Soc 144(10):3620Google Scholar
  56. 56.
    Elangovan S, Hartvigsen JJ, O’Brien JE, Stoots CE, Herring JS, Lessing PA (2004) Operation and analysis of solid oxide fuel cells in steam electrolysis mode, Session B07, 6th European SOFC Forum, Lucerne, Switzerland, 28 June–2 July, 2004Google Scholar
  57. 57.
    Ishihara T et al (1999) J Electrochem Soc 146(5):1643Google Scholar
  58. 58.
    Maricle DL et al (1992) Solid State Ionics 52:173Google Scholar
  59. 59.
    Kharton VV et al (2001) J Mater Sci 36:1105Google Scholar
  60. 60.
    Hidenori Y et al (1988) J Electrochem Soc: Solid-State Sci Technol 135:2077Google Scholar
  61. 61.
    Kirk TJ, Winnick J (1993) J Electrochem Soc 140(12):3494Google Scholar
  62. 62.
    Lu C et al (2003) J Electrochem Soc 150(3):A354Google Scholar
  63. 63.
    Alfa Aesar 2004 catalog prices: La2O3 (99.99%) $108/kg, Ga2O3 (99.999%) $3400/kg, CeO2 (99.9%) $84/kg, Y2O3 (99.99%) $212/kg, Gd2O3 (99.99%) $320/kgGoogle Scholar
  64. 64.
    Kharton VV et al (2001) J Mater Sci 36:1105Google Scholar
  65. 65.
    Setoguchi T et al (1993) J Electrochem Soc 139(10):2875Google Scholar
  66. 66.
    Jiang SP, Chan SH (2004) J Mater Sci 39:4405Google Scholar
  67. 67.
    Azad AM, Larose S, Akbar SA (1994) J Mater Sci 29(16):4135Google Scholar
  68. 68.
    Fung KZ et al (1994) J Am Ceram Soc 77(6):1638Google Scholar
  69. 69.
    Fung KZ et al (1992) Solid State Ionics 52:199Google Scholar
  70. 70.
    Joshi AV et al (1990) J Mater Sci 25:1237Google Scholar
  71. 71.
    Abraham F et al (1990) Solid State Ionics, Diffusion Reactions 40–41(part 2):934Google Scholar
  72. 72.
    Simner SP et al (1997) J Am Ceram Soc 80(10):2563Google Scholar
  73. 73.
    Yaremchenko AA et al (2000) J Electroceram 4(1):233Google Scholar
  74. 74.
    Pasciak G et al (2001) J Eur Ceram Soc 21:1867Google Scholar
  75. 75.
    Priovano C et al (2003) Solid State Ionics 159(1–2):167Google Scholar
  76. 76.
    Kreuer K-D et al (2004) Chem Rev 104:4637Google Scholar
  77. 77.
    Hartvigsen J, Elangovan S, Khandkar A (1993) A comparison of proton and oxygen ion conducting electrolytes for fuel cell applications, presented at AIChE Annual Meeting Fuel Cells for Utility Applications and Transportation—Engineering &L Design II, St. Louis, MO, November 11, 1993Google Scholar
  78. 78.
    Iwahara H et al (1983) Solid State Ionics 9&10:1021Google Scholar
  79. 79.
    Iwahara H (1986) J Appl Electrochem 16:663Google Scholar
  80. 80.
    Iwahara H (1992) Solid State Ionics 52:99Google Scholar
  81. 81.
    Iwahara H et al (1988) J Electrochem Soc: Solid-State Sci Technol 135(2):529Google Scholar
  82. 82.
    Chen FL et al (1998) J Eur Ceram Soc 18:1389Google Scholar
  83. 83.
    Bhide SV, Virkar AV (1999) J Electrochem Soc 146(6):2038Google Scholar
  84. 84.
    Kreuer KD (1999) Solid State Ionics 125(1–4):285Google Scholar
  85. 85.
    Kreuer KD et al (2001) Solid State Ionics 145(1–4):295Google Scholar
  86. 86.
    Kreuer KD (2003) Annu Rev Mater Res 33:333Google Scholar
  87. 87.
    Hassan D et al (2003) J Eur Ceram Soc 23:221Google Scholar
  88. 88.
    Fehringer G et al (2004) J Eur Ceram Soc 24:705Google Scholar
  89. 89.
    Kreuer KD (2003) Annu Rev Mater Res 33:333Google Scholar
  90. 90.
    Kobayshi T et al (2001) Solid State Ionics 138:243Google Scholar
  91. 91.
    Jian SP et al (2002) J Eur Ceram Soc 22:361Google Scholar
  92. 92.
    Ebbinghaus BB (1993) Combustion Flame 93:119Google Scholar
  93. 93.
    Kofstad P, Bredesen R (1992) Solid State Ionics 52:69Google Scholar
  94. 94.
    Yang SG et al (2003) Adv Mater Proc 161(6):34Google Scholar
  95. 95.
    Larring Y, Norby T (2000) J Electrochem Soc 147(9):3251Google Scholar
  96. 96.
    Kung SC et al (2000) Performance of metallic interconnect in solid-oxide fuel cells, presented at the 2000 Fuel Cell Seminar, Oct 30–Nov 2, 2000, Portland, OregonGoogle Scholar
  97. 97.
    Horita T et al (2003) J Electrochem Soc 150(3):A243Google Scholar
  98. 98.
    Windes WE, PA Lessing (2003) Fabrication methods of a leaky SOFC design. Eighth International Symposium of Solid Oxide Fuel Cells (SOFC VIII), 203rd Meeting of the electrochemical Society, Paris, France, April 27–May 2, 2003Google Scholar
  99. 99.
    Windes WE, Lessing PA (2003) A low CTE intermetallic bipolar plate. Eighth International Symposium of solid Oxide Fuel Cells (SOFC VIII), 203rd Meeting of the Electrochemical Society, Paris, France, April 27–May 2, 2003Google Scholar
  100. 100.
    Hartvigsen JJ et al (2001) Via filled interconnect for solid oxide fuel cells, U.S. Patent 6,183,897 B1, February 6, 2001Google Scholar
  101. 101.
    Bedding ME et al (2001) High performance solid electrolyte fuel cells, U.S. Patent Application 20010044041, November 22, 2001Google Scholar
  102. 102.
    Meulenberg WA et al (2001) J Mater Sci 36:3189Google Scholar
  103. 103.
    Wang LS et al (1992) Solid State Ionics 52:261Google Scholar
  104. 104.
    Stevenson J (2003) SOFC seals: materials status. PNNL Presentation at SECA Core Technology Program—SOFC Seal Meeting, July 8, 2003, Sandia National laboratory, Albuquerque, NMGoogle Scholar
  105. 105.
    Meulenberg WA et al (2003) J Mater Sci 38:507Google Scholar
  106. 106.
    Foster AR, Wright RL Jr (1968) Basic nuclear engineering. Allyn and Bacon, Inc., MA, pp 325Google Scholar
  107. 107.
    Nogami M, Matsushita H, Kasuga T, Hayakawa T (1999) Electrochem Solid-State Lett 2(8):415Google Scholar
  108. 108.
    Kuo CK, Tan A, Sarkar P, Nicholson PS (1992) Solid State Ionics 58:311Google Scholar
  109. 109.
    Schafer G, Zyl AV, Weppner W (1995) Process for the production of K- or Rb-β- or -β-aluminum oxide ion conductors, U.S. Patent 5,474,959, Dec. 12, 1995Google Scholar
  110. 110.
    Schafer GW, Kim HJ, Aldinger F (1997) Solid State Ionics 97:285Google Scholar
  111. 111.
    Joshi AV, Liu M, Bjorseth A, Renberg L (1994) NaOH production from ceramic electrolytic cell, U.S. Patent 5,290,405 March 1, 1994Google Scholar
  112. 112.
    Goodenough JB, Hong HY-P, Kafalas JA (1976) Mat Res Bull 11:203Google Scholar
  113. 113.
    Kohler H, Schulz H (1985) Mat Res Bull 20:1461Google Scholar
  114. 114.
    Kohler H, Schulz H (1986) Mat Res Bull 21:23Google Scholar
  115. 115.
    Kreuer KD et al (1986) Mat Res Bull 21:149Google Scholar
  116. 116.
    Kreuer KD, Warhus U (1986) Mat Res Bull 21:357Google Scholar
  117. 117.
    Kreuer K-D, Kohler H, Maier J (1989) In: Takahashi T (ed) High conductivity solid ionic conductors: recent trends and applications. World Scientific Publ. Co, SingaporeGoogle Scholar
  118. 118.
    Damasceno O, Siebert E, Khireddine H, Fabry P (1992) Sensors Actuators B 8:245Google Scholar
  119. 119.
    Slade RCT, Young KE (1991) Solid State Ionics 46:83Google Scholar
  120. 120.
    PRONAS available from Ceramatec, Inc., 2425 South 900 West, Salt Lake City, UT 84119; Phone 801-978-2152Google Scholar
  121. 121.
    Doyle M, Rajendran G (2003) In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells-fundamental, technology and applications, vol 3: fuel cell technology and applications. John Wiley & Sons, New YorkGoogle Scholar
  122. 122.
    Rasten E, Hagen G, Tunold R (2001) Anode catalyst materials for PEM-electrolysis, New Materials for Electrochemical Systems IV. Extended Abstracts of the Fourth International symposium on New Materials for Electrochemical systems: 278–280, Montreal, Quebec, Canada, 9–13 July 2001Google Scholar
  123. 123.
    Linkous CA et al (1998) Int J Hydrogen Energy 23(7):525Google Scholar
  124. 124.
    Suffredini HB et al (2000) Int J Hydrogen Energy 25:415Google Scholar
  125. 125.
    Ramesh L et al (1999) Int J Energy Res 23:919Google Scholar
  126. 126.
    Weikang H et al (1997) Int J Hydrogen Energy 22(6):621Google Scholar
  127. 127.
    Weikang H (2000) Int J Hydrogen Energy 25:111Google Scholar
  128. 128.
    Abdel Ghany NA et al (2002) Electrochimica Acta 48:21Google Scholar
  129. 129.
    Oi T, Sakaki Y (2004) J Power Sources 129(2):229Google Scholar
  130. 130.
    Morizonoa T, Watanabe K, Ohstsuka K (2002) Production of hydrogen by electrolysis with proton exchange membrane (PEM) using sea water and fundamental study of hybrid system with PV-ED-FC. Memoirs of the Faculty of Engineering, Miyazaki University, No. 31: pp 213–218Google Scholar
  131. 131.
    HOGEN™ Hydrogen Generators from Proton Energy Systems, 50 Inwood Road, Rocky Hill, Conn. 06067. Phone: 860/571-6533 Web Site: www.protonenergy.comGoogle Scholar
  132. 132.
    Friedland RJ, Speranza AJ (2001) Hydrogen production through electrolysis. Proceeding of the 2001 DOE Hydrogen Program Review, NREL/CP-570-30535Google Scholar
  133. 133.
    Stucki S et al (1998) J Appl Electrochem 28(10):1041Google Scholar
  134. 134.
    Panchenko A et al (2004) Phys Chem Chem Phys 6 11:2891Google Scholar
  135. 135.
    Ando U, Tanaka T (2004) Int J Hydrogen Energy 29:11349Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Materials DepartmentIdaho National LaboratoryIdaho FallsUSA

Personalised recommendations