Advertisement

Journal of Materials Science

, Volume 42, Issue 12, pp 4675–4683 | Cite as

Growth and characterization of high resistivity c-axis oriented ZnO films on different substrates by RF magnetron sputtering for MEMS applications

  • Ravindra Singh
  • Mahesh Kumar
  • Sudhir Chandra
Article

Abstract

In the present work, we report the deposition of high resistivity c-axis oriented ZnO films by RF magnetron sputtering. The deposition parameters such as RF power, target-to-substrate spacing, substrate temperature, and sputtering gas composition affect the crystallographic properties of ZnO films, which were evaluated using XRD analysis. The self-heating of the substrate in plasma during film deposition was investigated and we report that highly “c-axis oriented” ZnO thin films can be prepared on different substrates without any external heating under optimized deposition parameters. The post-deposition annealing of the film at 900 °C for 1 h in air ambient increases the intensity of (002) peak corresponding to c-axis orientation in addition with the decrease in full width at half maxima (FWHM). Bond formation of ZnO was confirmed by FTIR analysis. Grains distribution and surface roughness have been analyzed using SEM and AFM. The DC resistivity of the films prepared under different deposition conditions was measured using MIS/MIM structures and was found to be in the range of 1011–1012 Ω cm at low electric field of 104 V/cm. The ZnO film of 1 μm thickness has transmittance of over 85% in the visible region. Applications of these films in MEMS devices are discussed.

Keywords

Surface Acoustic Wave Micro Electro Mechanical System Metal Insulator Metal Space Charge Limited Substrate Spacing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The work was carried under a Sponsored Research Project of DRDO, Government of India.

References

  1. 1.
    Yamamoto T, Shiosaki T, Kawabata A (1980) J Appl Phys 51:3113CrossRefGoogle Scholar
  2. 2.
    Soki T, Hatanaka Y, Look DC (2000) Appl Phys Lett 76:3257CrossRefGoogle Scholar
  3. 3.
    Liu Y, Gorla CR, Liang S, Emanetoglu N, Lu Y, Shen H, Wraback M (2000) J Electron Mater 29:60Google Scholar
  4. 4.
    Ferblantier G, Mailly F, Asmar RA, Foucaran A, Delannoy FP (2005) Sensors Actuators A 122:184CrossRefGoogle Scholar
  5. 5.
    Devoe DL (2001) Sensors Actuators A 88:263CrossRefGoogle Scholar
  6. 6.
    Lee SS, White RM (1998) Sensors Actuators A 71:153CrossRefGoogle Scholar
  7. 7.
    Gabl R, Feucht HD, Zeininger H, Eckstein G, Schreiter M, Primig R, Pitzer D, Wersing W (2004) Biosensors Bioelectr 19:615CrossRefGoogle Scholar
  8. 8.
    Xu T, Wu G, Zhang G, Hao Y (2003) Sensors Actuators A 104:61CrossRefGoogle Scholar
  9. 9.
    Bhatt V, Pal P, Chandra S (2005) Surface Coat Technol 198(1–3):304CrossRefGoogle Scholar
  10. 10.
    Ondo-Ndong R, Pascal-Delannoy F, Boyer A, Giani A, Foucaran A (2003) Mater Sci Eng B 97:68CrossRefGoogle Scholar
  11. 11.
    Gordillo G, Calderon C (2001) Solar Energy Mater Solar Cells 69:251CrossRefGoogle Scholar
  12. 12.
    Li BS, Liu YC, Shen DZ, Zhang JY, Lu YM, Fan XQ (2003) J Cryst Growth 249:179CrossRefGoogle Scholar
  13. 13.
    Lee JH, Ko KH, Park BO (2003) J Cryst Growth 247:119CrossRefGoogle Scholar
  14. 14.
    Ayouchi R, Martin F, Leinen D, Ramos-Barrado JR (2003) J Cryst Growth 247:497CrossRefGoogle Scholar
  15. 15.
    Zeng JN, Low JK, Ren ZM, Liew T, Lu YF (2002) Appl Surf Sci 197:362CrossRefGoogle Scholar
  16. 16.
    Yamada A, Sang B, Konagai M (1997) Appl Surf Sci 112:216CrossRefGoogle Scholar
  17. 17.
    Xu XL, Lau SP, Chen JS, Sun Z, Tay BK, Chai JW (2001) Mater Sci Semicond Proc 4:617CrossRefGoogle Scholar
  18. 18.
    Iwata K, Fons P, Niki S, Yamada A, Matsubara K, Nakahara K, Tanabe T, Takasu H (2000) J Cryst Growth 214/215:50CrossRefGoogle Scholar
  19. 19.
    Sharma P (June 2002) PhD Dissertation, Ch. 4, Department of Physics and Astrophysics, Delhi UniversityGoogle Scholar
  20. 20.
    Zhang Y, Du G, Liu D, Wang X, Ma Y, Wang J, Yin J, Yang X, Hou X, Yang S (2002) J Crys Growth 243:439CrossRefGoogle Scholar
  21. 21.
    Lu YM, Hwang WS, Liu WY, Yang JS (2001) Mater Chem Phys 72:269CrossRefGoogle Scholar
  22. 22.
    Nakata Y, Okada T, Maeda M (2002) Appl Surf Sci 197/198:368CrossRefGoogle Scholar
  23. 23.
    Kang DJ, Kim JS, Jeong SW, Roh Y, Jeong SH, Boo JH (2005) Thin Solid Films 475:160CrossRefGoogle Scholar
  24. 24.
    Maissel LI, Glang R (1970) In: Handbook of thin film technology. McGraw-Hill Book Company, New York, pp 4–15Google Scholar
  25. 25.
    Kim NH, Kim HW (2004) Brit Ceram Trans 103:15CrossRefGoogle Scholar
  26. 26.
    Ondo-ndong R, Ferblantier G, Al Kalfioui M, Boyer A, Foucaran A (2003) J Cryst Growth 255:130CrossRefGoogle Scholar
  27. 27.
    Tarte P (1961) Spectrochim Acta 18:467CrossRefGoogle Scholar
  28. 28.
    Kao KC, Hwang W (1981) In: Electrical transport in solids. Pergamon Press, Oxford, England, pp 150Google Scholar
  29. 29.
    Chu SY, Water W, Liaw JT (2003) J Euro Ceram Soc 23:1593CrossRefGoogle Scholar
  30. 30.
    Mitsuyu T, Ono S, Wasa K (1980) J Appl Phys 51(5):2464CrossRefGoogle Scholar
  31. 31.
    Subramanyam TK, Naidu BS, Uthanna S (1999) Cryst Res Technol 34:981CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Centre for Applied Research in Electronics (CARE)Indian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations