Advertisement

Journal of Materials Science

, Volume 42, Issue 12, pp 4684–4691 | Cite as

Low temperature oxidation of copper alloys—AEM and AFM characterization

  • Mari HonkanenEmail author
  • Minnamari Vippola
  • Toivo Lepistö
Article

Abstract

Oxidation kinetics and oxide structures of three polycrystalline copper grades at different temperatures were studied by analytical transmission electron microscopy (AEM) and atomic force microscopy (AFM). The copper samples were oxidized in air at 200 and 350 °C for 1–1,100 min. AEM and AFM studies indicated that alloying and increase of temperature, accelerated oxidation. At 200 °C local oxidation was observed in the unalloyed copper samples while a uniform oxide layer formed on the alloyed coppers. At 350 °C a uniform oxide layer formed on all copper samples. The oxide structure was nanocrystalline cubic Cu2O after all oxidation treatments at 200 °C and after 5 min oxidation at 350 °C. After 25 and 100 min oxidation at 350 °C the crystal size of copper oxide had grown and the oxide structure was monoclinic CuO.

Keywords

Atomic Force Microscopy Cu2O Copper Oxide Electron Diffraction Pattern Analytical Transmission Electron Microscopy 

Notes

Acknowledgement

The authors thank The National Technology Agency of Finland (TEKES) for financial support.

References

  1. 1.
    Yang J et al (1998) Appl Phys Lett 73:2841CrossRefGoogle Scholar
  2. 2.
    Cabrera N, Mott N (1948) Rep Prog Phys 12:163CrossRefGoogle Scholar
  3. 3.
    Cocke D et al (1995) Appl Surface Sci 84:153CrossRefGoogle Scholar
  4. 4.
    Zhou G, Yang J (2003) Surface Sci 531:359CrossRefGoogle Scholar
  5. 5.
    Lawless K (1974) Rep Prog Phys 37:231CrossRefGoogle Scholar
  6. 6.
    Young F, Cathcart J, Gwathmey A (1956) Acta Metall. 4:145CrossRefGoogle Scholar
  7. 7.
    Aniekwe U, Utigard T (1999) Can Metall Quart 38:277CrossRefGoogle Scholar
  8. 8.
    Lawless K, Gwathmey A (1956) Acta Metall 4:153CrossRefGoogle Scholar
  9. 9.
    Li J, Mayer J, Colgan E (1990) J Appl Phys 70:2820CrossRefGoogle Scholar
  10. 10.
    Lenglet M et al (1995) Mater Res Bull 30:393CrossRefGoogle Scholar
  11. 11.
    Bellakhal N et al (1996) Mater Sci Eng B41:206CrossRefGoogle Scholar
  12. 12.
    Musa A, Akomolafe T, Carter M (1998) Solar Energy Mater Solar Cells 51:305CrossRefGoogle Scholar
  13. 13.
    Ghosh S et al (2000) Vacuum 57:377CrossRefGoogle Scholar
  14. 14.
    International Centre for Diffraction Data (ICDD), Powder Diffraction File Database 1999Google Scholar
  15. 15.
    Brazdeikis A, Karlsson U, Flodström A (1996) Thin Solid Films 281–282:57CrossRefGoogle Scholar
  16. 16.
    Kestel B (1981) Polishing methods for metallic and ceramic transmission electron microscopy specimens. Argonne National Laboratory, Materials Science Division, Illinois, 58 ppGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Mari Honkanen
    • 1
    Email author
  • Minnamari Vippola
    • 1
  • Toivo Lepistö
    • 1
  1. 1.Institute of Materials ScienceTampere University of TechnologyTampereFinland

Personalised recommendations