Journal of Materials Science

, Volume 41, Issue 17, pp 5480–5489 | Cite as

Studies on sintering behaviour of Al2O3–ZrO2 oxide composites processed by extended arc thermal plasma and conventional heating

  • D. R. SahuEmail author
  • B. K. Roul
  • S. K. Singh
  • R. N. P. Choudhury


Al2O3–ZrO2 composites were sintered using low cost extended arc thermal plasma reactor and conventional heating. Composites prepared in a wide range of composition were studied in terms of their density, shrinkage, hardness, structure, microstructure and dielectric response. Experimental parameter such as sintering time, sintering temperature and plasma power were optimized to achieve higher sintered end product. Highly dense sintered products were obtained by plasma heating route within short sintering time compared with conventional sintered method. Interesting development pertaining to structure and phase evolution, structure and dielectric response are analyzed. It is found that compositional variation in this composite produces structural phase separation at different sintering conditions, which is more in plasma heating product than conventional heated product. Plasma sintered product always shows less dielectric constant as compared to conventional sintered sample.


Tetragonal Phase Sintered Sample Conventional Heating Sinter Time Plasma Power 



Author D. R. Sahu is thankful to Director Institute of Materials Science, Bhubaneswar for giving permission to visit National Cheng Kung University, Tainan, Taiwan for a research assignment.


  1. 1.
    Bykov YV, Rybakov KI, Semenov VE (2001) J Phys D: Appl Phys 34:R55CrossRefGoogle Scholar
  2. 2.
    Jones RH (1993) JOM December 14Google Scholar
  3. 3.
    Willert-Porada MA et al (1997) In: Shiota I et al (eds) Functionally graded materials 1996. Elsevier, Amsterdam p 349Google Scholar
  4. 4.
    Horano H, Inada H (1992) J Mat Sci 27:3511CrossRefGoogle Scholar
  5. 5.
    Saha A, Agarwal DC (1998) J Mat Sci 77:1333Google Scholar
  6. 6.
    Bykov YV, Rybakov KJ, Semenov VE (2001) J Phys D: Appl Phys 3:255Google Scholar
  7. 7.
    Kim JS, Jhonson DL (1983) Ceramic Int 82(5):620Google Scholar
  8. 8.
    Bensisu K, Inal OT (1994) J Mat Sci 29:5175Google Scholar
  9. 9.
    Kakegawa K, Uekawa N, Wu YJ, Sasaki Y (2003) Mat Sci Eng B 99:11CrossRefGoogle Scholar
  10. 10.
    Nicolas G, Austric M, Marine W, Hefev GA (1997) App Sur Sci 109/110:289CrossRefGoogle Scholar
  11. 11.
    Zhang YL, Jin XJ, Hsu TY, Zhang YF, Sli JL (2001) Scripta Materilia 45:621CrossRefGoogle Scholar
  12. 12.
    Reyes Morel PE, Chen IW (1988) J Am Ceram Soc 71:648CrossRefGoogle Scholar
  13. 13.
    Von Recum AF (1998) Handbook of biomaterials evaluation, 2nd edn. CRC publication, p 143Google Scholar
  14. 14.
    De Aza AH, Chevalier J, Fantozzi G, Schedi M, Torrecillas R (2002) Biomaterials 23:937CrossRefGoogle Scholar
  15. 15.
    Willmann G (2000) Adv Eng Mater 2:114CrossRefGoogle Scholar
  16. 16.
    Cutler RA, Reynolds JR, Jones A (1992) J Am Ceram Soc 75(8):2175CrossRefGoogle Scholar
  17. 17.
    Lee JK, Hang HH (2001) Mat Lett 42:215CrossRefGoogle Scholar
  18. 18.
    Oh HS, Tomadel G, Le WH, Choi SC (1996) J Mat Sci 31:5321CrossRefGoogle Scholar
  19. 19.
    Johnson DL (1969) J Appl Phys 40(1):192CrossRefGoogle Scholar
  20. 20.
    Johnson DL, Cutler JB (1963) J Am Ceram Soc 46:541CrossRefGoogle Scholar
  21. 21.
    Johnson DL, Rizzo A (1980) J Am Ceram Soc 55(4):380Google Scholar
  22. 22.
    Johnson DL (1983) Proceedings of the international symposium on ceramic composites for engine. Hakone, JapanGoogle Scholar
  23. 23.
    Roul BK, Singh SK, Mohanty BC (1998) J Mat Synt Proc 6:9CrossRefGoogle Scholar
  24. 24.
    Sahu DR, Roul BK, Singh SK, Choudhury RNP (2002) J Mat Design Appl L2 216:127Google Scholar
  25. 25.
    Roul BK, Sahu DR, Mohanty S, Mohanty BC, Singh SK (2001) Mat Chem Phys 67(1/3):151CrossRefGoogle Scholar
  26. 26.
    Sahu DR, Singh SK, Choudhury RNP, Roul BK (2004) Mat Sci Engg B 106:141CrossRefGoogle Scholar
  27. 27.
    Sahu DR, Roul BK, Singh SK, Choudhury RNP (2002) Mat Lett 56:817CrossRefGoogle Scholar
  28. 28.
    Shim Ming Ho (1982) Mat Sci Eng 54:23CrossRefGoogle Scholar
  29. 29.
    Hong J, Gao L, Torre SDDL, Miyamoto H, Miyamoto K (2000) Mat Lett 43:27CrossRefGoogle Scholar
  30. 30.
    Thompson DP, Dickins AM, Thorp JS (1992) J Mat Sci 27:2267CrossRefGoogle Scholar
  31. 31.
    Molla J, Hridinger R, Ibarra A, Link G (1993) J Appl Phys 73(11):7667CrossRefGoogle Scholar
  32. 32.
    Rao KV, Smakula A (1965) J Appl Phys 16(6):2031CrossRefGoogle Scholar
  33. 33.
    Sillars R (1937) J Inst Elec Eng 80:378Google Scholar
  34. 34.
    Maxwell JC (1891) A treatise on electricity and magnetism, 3rd edn, vol. 1. Clarendon, Oxford (reprint by Dover)Google Scholar
  35. 35.
    Wagner KW (1914) Arch Elektrotech (Berlin) II 371Google Scholar
  36. 36.
    Onsager L (1936) J Am Chem Soc 58:1486CrossRefGoogle Scholar
  37. 37.
    Debye P (1929) Polar molecules. Chemical Catalog Company, New YorkGoogle Scholar
  38. 38.
    Szigeti B (1949) Trans Faraday Soc 45:155; (1950) Proc Roy Soc London, A 204:51; (1959) A252:217; (1960) A258:377Google Scholar
  39. 39.
    Chopra KL (1969) Thin film phenomena. McGraw-Hill, New YorkGoogle Scholar
  40. 40.
    Sexena U, Srivastava UN (1976) Thin Solid Films 33:185CrossRefGoogle Scholar
  41. 41.
    Weaver C (1965) Vacuum 15:171CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • D. R. Sahu
    • 1
    • 2
    Email author
  • B. K. Roul
    • 2
  • S. K. Singh
    • 3
  • R. N. P. Choudhury
    • 4
  1. 1.Department of Materials Science and EngineeringNational Cheng Kung UniversityTainanTaiwan
  2. 2.Institute of Materials ScienceBhubaneswarIndia
  3. 3.Regional Research LaboratoryBhubaneswarIndia
  4. 4.Department of Physics and MeteorologyIndian Institute of TechnologyKharagpurIndia

Personalised recommendations