Advertisement

Journal of Materials Science

, Volume 41, Issue 18, pp 5810–5814 | Cite as

Electrical behavior of low density polyethylene containing an inhomogeneous distribution of ZnO nanoparticles

  • J. I. Hong
  • L. S. Schadler
  • R. W. Siegel
  • E. Mårtensson
Article

Abstract

ZnO nanoparticles were mixed with low density polyethylene (LDPE) to form nanocomposites. The distribution of ZnO filler particles was controlled by changing the mixing method, and the effects of controlled inhomogeneous distribution on the electrical resistivity were measured. The percolation limit in the composites with controlled inhomogeneity decreased significantly compared to that of the analogous nanocomposites with uniform filler distributions, and the resistivity of the filled composites decreased as a function of applied field strength, exhibiting a nonlinear IV relationship. The nonlinearity increased with ZnO filler concentration.

Keywords

LDPE Filler Particle Filler Concentration Filler Distribution Filler Volume Fraction 

Notes

Acknowledgement

We acknowledge ABB for funding this work and Nanophase Technologies Corporation for donating nanoparticles. This work was supported in part by the Nanoscale Science and Engineering Initiative of the National Science Foundation under NSF Award Number DMR-0117792.

Reference

  1. 1.
    Godovsky DY (2000) Adv Polym Sci 153:163CrossRefGoogle Scholar
  2. 2.
    Gleiter H, Weissmüller J, Wollersheim O, Würschum R (2001) Acta Mater 49:737CrossRefGoogle Scholar
  3. 3.
    Brus L (1986) J Phys Chem 90:2555CrossRefGoogle Scholar
  4. 4.
    Henk PO, Kortsen TW, Kvarts T (1999) High Perform Polym 11:281CrossRefGoogle Scholar
  5. 5.
    Ash BJ, Schadler LS, Siegel RW (2002) Mater Lett 55:83CrossRefGoogle Scholar
  6. 6.
    Ng CB, Ash BJ, Schadler LS, Siegel RW (2001) Adv Compos Lett 10:101Google Scholar
  7. 7.
    Hong JI, Schadler LS, Siegel RW, Mårtensson E (2003) Appl Phys Lett 82:1956CrossRefGoogle Scholar
  8. 8.
    Stauffer D, Aharony A (1991) Introduction to percolation. Theory Taylor & Francis Inc., Washington, DCGoogle Scholar
  9. 9.
    Ueki MM, Zanin M (1999) IEEE Trans Dielec Elec Insul 6:876CrossRefGoogle Scholar
  10. 10.
    Coleman JN, Curran S, Dalton AB, Davey AP, McCarthy B, Blau W, Barklie RC (1998) Phys Rev B58:7492CrossRefGoogle Scholar
  11. 11.
    Wycisk R, Poźniak R, Pasternak A (2002) J Electrostat 56:55CrossRefGoogle Scholar
  12. 12.
    Nan CW, Tschöpe A, Holten S, Kliem H, Birringer R (1999) J Appl Phys 85:7735CrossRefGoogle Scholar
  13. 13.
    Hong JI, Cho KS, Chung CI, Schadler LS, Siegel RW (2002) J Mater Res 17:940CrossRefGoogle Scholar
  14. 14.
    Amey WG, Hamburger F (1949) Proc ASTM 49:1079Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • J. I. Hong
    • 1
    • 3
  • L. S. Schadler
    • 1
  • R. W. Siegel
    • 1
  • E. Mårtensson
    • 2
  1. 1.Materials Science and Engineering Department and Rensselaer Nanotechnology CenterRensselaer Polytechnic InstituteTroyUSA
  2. 2.ABB AB, Corporate ResearchVästeråsSweden
  3. 3.Center for Magnetic Recording ResearchUniversity of California–San DiegoLa JollaUSA

Personalised recommendations