Advertisement

Journal of Materials Science

, Volume 41, Issue 18, pp 5941–5953 | Cite as

Micromechanical analysis of an elastomer filled with particles organized in chain-like structure

  • E. Coquelle
  • G. Bossis
  • D. Szabo
  • F. Giulieri
Article

Abstract

Organization of iron filler particles inside an elastomer is obtained by curing the polymer in presence of a magnetic field. We have studied the effect of structuring the particles in chains on the quasistatic behavior in elongation in the absence of magnetic field. The effect of a coupling molecule between the surface of the particles and the elastomer is also analyzed. It is shown that the modulus of the first loading curve is strongly increased by structuring the particles, and also by the use of a coupling agent. Using an effective medium approach we well reproduce the experimental behavior of the elastic modulus and we deduce that a thick layer of elastomer is still present between the particles. A finite element calculation allows to distinguish between two modes of rupture at high strains, depending on the strength of the coupling between the particles and the matrix.

Keywords

Finite Element Method Silane Coupling Agent Finite Element Method Simulation Effective Modulus Breaking Strain 

References

  1. 1.
    Occiuzzi A, Spizzuoco M, Serino G (2003) Smart Mater Struct 12:703CrossRefGoogle Scholar
  2. 2.
    Dyke S, Spencer B, Sain M, Carlson J (1996) Smart Mater Struct 5:565CrossRefGoogle Scholar
  3. 3.
    Yalcintas M, Dai H (1999) Smart Mater Struct 8:560CrossRefGoogle Scholar
  4. 4.
    Genc S, Phule P (2002) Smart Mater Struct 11:140CrossRefGoogle Scholar
  5. 5.
    Carlson J, Jolly M (2000) Mechatronics 10:555CrossRefGoogle Scholar
  6. 6.
    Ginder J, Nichols M, Elie L, Tardiff J (1999) SPIE Conf Smart Mater Technol kll:131Google Scholar
  7. 7.
    Bellan C, Bossis G (2002) Int J Mod Phys B 16:2447CrossRefGoogle Scholar
  8. 8.
    Jolly M, Carlson J, Munoz B, Bullions T (1996) J Intell Mater Syst Struct 7(6):613CrossRefGoogle Scholar
  9. 9.
    Laraba-Abbes F, Ienny P, Piques R (2003) Polymer 44:821CrossRefGoogle Scholar
  10. 10.
    Mullins L (1948) Rubber Chem Technol 46(1):281CrossRefGoogle Scholar
  11. 11.
    Govindjee S, Simo J (1992) Int J Solids Struct 29(14/15):1737CrossRefGoogle Scholar
  12. 12.
    Gent A, Park B (1984) J Mater Sci 19:1947CrossRefGoogle Scholar
  13. 13.
    Vicente J, Bossis G, Lacis S, Guyot M (2002) J Magn Mat 251:100CrossRefGoogle Scholar
  14. 14.
    Moshev V, Kozhevnikova L (1996) J Adhesion 55:209CrossRefGoogle Scholar
  15. 15.
    Sadeghipour WWUK, Boberick K, Baran G (2002) Mat Sci Eng A, 332:362CrossRefGoogle Scholar
  16. 16.
    Christensen R (1979) Mechanics of composite materials. Wiley. ISBN 0-89464-501-3Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • E. Coquelle
    • 1
  • G. Bossis
    • 1
  • D. Szabo
    • 1
  • F. Giulieri
    • 2
  1. 1.LPMC, UMR6622Université de Nice Sophia-AntipolisNice-Cedex 2France
  2. 2.CMOMUniversité de Nice Sophia-AntipolisNice-Cedex 2France

Personalised recommendations