Advertisement

Journal of Materials Science

, Volume 41, Issue 18, pp 5870–5881 | Cite as

Influence of thermal treatment on the water release and the glassy structure of perlite

  • M. Roulia
  • K. Chassapis
  • J. A. Kapoutsis
  • E. I. Kamitsos
  • T. Savvidis
Article

Abstract

The effect of slow and rapid thermal treatment on water release and the structure of perlite was investigated by employing complementary techniques including X-ray diffraction, infrared spectroscopy and scanning electron microscopy. The study of several perlite samples, with different grain size and origin, has shown that rapid heating has a more pronounced effect on the glassy structure and that this is the only process capable of leading to perlite grain expansion. This process was simulated in a laboratory furnace allowing the careful control of temperature and time of treatment, and, thus, the description of their influence on the expansion process. The results show that molecular water released between 250 and 550 °C affects mostly the expansion process. Infrared spectroscopy provides evidence for additional water release, through dehydroxylation of Si–OH bonds, that may contribute also to expansion with a simultaneous development of the silicate network. The grain morphology was found to correlate with the expansion ratio. The presence of crystallites in raw perlite was shown to affect also the expansion process.

Keywords

Expansion Ratio Expansion Process Grain Morphology Molecular Water Heat Treatment Time 

Notes

Acknowledgements

This work was supported in part by the Greek General Secretariat for Research and Technology. Dr Y.D. Yiannopoulos is gratefully acknowledged for his help with infrared studies at NHRF.

References

  1. 1.
    Friedman I, Long W, Smith R (1963) J Geophys Res 68:6523CrossRefGoogle Scholar
  2. 2.
    Zahringer K, Martin J-P, Petit J-P (2001) J Mater Sci 36:2691CrossRefGoogle Scholar
  3. 3.
    Klipfel A, Founti M, Zahringer K, Martin J-P, Petit J-P (1998) Flow Turbul Combust 60:283CrossRefGoogle Scholar
  4. 4.
    Zahringer K, Martin J-P, Petit J-P (2001) Glass Sci Technol 74:57Google Scholar
  5. 5.
    Papanastassiou D (1980) J Trans Inst Min Metall (Sect C: Mineral Process Extr Metall) 89:120Google Scholar
  6. 6.
    Dogan M, Alkan M, Chakir U (1997) J Colloid Interf Sci 192:114CrossRefGoogle Scholar
  7. 7.
    Alkan M, Dogan M (1998) J Colloid Interf Sci 207:90CrossRefGoogle Scholar
  8. 8.
    Laskowski JS (1993) J Colloid Interf Sci 159:349CrossRefGoogle Scholar
  9. 9.
    Davis B, Mcphie J (1996) J Volcanol Geotherm Res 71:1CrossRefGoogle Scholar
  10. 10.
    Tarasevich YI, Verlinskaya RM, Nesterova MP, Gornitskii AB (1986) Khimiya I Tekhnologiya Vody 8:34Google Scholar
  11. 11.
    Tarasevich YI, Panasevich AA, Bezorudko OV, Skrylev LD, Purich AA (1985) Khimiya I Tekhnologiya Vody 7:67Google Scholar
  12. 12.
    Roulia M, Chassapis K, Fotinopoulos C, Savvidis T, Katakis D (2003) Spill Sci Technol 8:425CrossRefGoogle Scholar
  13. 13.
    Koumanova B, Peeva-Antova P (2002) J Hazard Mater A 90:229CrossRefGoogle Scholar
  14. 14.
    Dogan M, Alkan M, Onganer Y (2000) Water Air Soil Poll 120:229CrossRefGoogle Scholar
  15. 15.
    Khodabandeh S, Davis M (1997) Microporous Mater 9:161CrossRefGoogle Scholar
  16. 16.
    Christidis GE, Paspaliaris I, Kontopoulos A (1999) Appl Clay Sci 15:305CrossRefGoogle Scholar
  17. 17.
    Dogan M, Alkan M (2003) Chemosphere 50:517CrossRefGoogle Scholar
  18. 18.
    Alkan M, Dogan M (2001) J Colloid Interf Sci 243:280CrossRefGoogle Scholar
  19. 19.
    Sodeyama K, Sakka Y, Kamino Y (1999) J Mater Sci 34:2461CrossRefGoogle Scholar
  20. 20.
    Tazaki K, Tiba T, Aratani M, Miyachi M (1992) Clay Clay Miner 40:122CrossRefGoogle Scholar
  21. 21.
    Stolper E (1982) Contrib Mineral Petr 81:1CrossRefGoogle Scholar
  22. 22.
    Lehmann H, Rössler M (1974) Therm Anal 1:619Google Scholar
  23. 23.
    Kamitsos EI, Patsis AP, Karakassides MA, Chryssikos GD (1990) J Non-Cryst Solids 126:52CrossRefGoogle Scholar
  24. 24.
    Bertoluzza A, Fagnano C, Morelli MA, Cottardi V, Guglielmi M (1982) J Non-Cryst Solids 48:117CrossRefGoogle Scholar
  25. 25.
    Yoshino H, Kamiya K, Nasu H (1990) J Non-Cryst Solids 126:68CrossRefGoogle Scholar
  26. 26.
    Kamitsos EI, Patsis AP and Kordas G (1993) Phys Rev B 48:12499; Kamitsos EI (1996) Phys Rev B 53:14659Google Scholar
  27. 27.
    Ingram MD, Davinson JE, Coats AM, Kamitsos EI, Kapoutsis JA (2000) Glastech Ber Glass Sci Technol 73:89Google Scholar
  28. 28.
    Kamitsos EI, Kapoutsis JA, Jain H, Hsieh CH (1994) J Non-Cryst Solids 171:31 and references thereinCrossRefGoogle Scholar
  29. 29.
    Friedman I, Smith R, Long W (1966) Geol Soc Am Bull 77:323CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • M. Roulia
    • 1
  • K. Chassapis
    • 1
  • J. A. Kapoutsis
    • 2
  • E. I. Kamitsos
    • 2
  • T. Savvidis
    • 3
  1. 1.Chemistry Department, Inorganic Chemistry LaboratoryUniversity of AthensAthensGreece
  2. 2.Theoretical and Physical Chemistry InstituteNational Hellenic Research FoundationAthensGreece
  3. 3.General State Chemistry Laboratory, Kozani BranchKozaniGreece

Personalised recommendations