Advertisement

Journal of Materials Science

, Volume 41, Issue 15, pp 4937–4943 | Cite as

Textured mullite at muscovite–kaolinite interface

  • G. Lecomte
  • P. Blanchart
Article

Abstract

Mullite crystallization was carried out by the inter-reaction of alternate layers of muscovite and kaolinite minerals. The nucleation and growth of mullite anisotropic crystals take place along the muscovite plane and specific structural relationships are observed, which confirm a topotactic effect with the high temperature form of muscovite. The [001]mull axis is oriented parallel to [010]musc, [310]musc and \( \left[ {\bar 310} \right]_{{\text{musc}}}\) axes. The mullite orientation is fully completed in a temperature range between the ternary eutectic at 985 °C and the ternary transition point at 1140 °C, of the SiO2–Al2O3–K2O system, which strongly suggests an influence of a small quantity of liquid phase at the interface. Along the kaolinite–muscovite interface, the realisation of highly textured ceramics can be achieved.

Keywords

Kaolinite Pair Distribution Function Leucite Metakaolinite Mullite Crystal 

References

  1. 1.
    Takenaka T, Sakata K (1980) Jpn J Appl Phys 19(1):31CrossRefGoogle Scholar
  2. 2.
    Igarashi H, Matsunaga K, Taniai T, Okazaki K (1978) Am Ceram Soc Bull 57(9):815Google Scholar
  3. 3.
    Youngblood GE, Gordon RS (1978) Ceram Int 4(3):93CrossRefGoogle Scholar
  4. 4.
    Hirao K, Ohashi M, Brito ME, Kanzaki S (1995) J Am Ceram Soc 78(6):1687CrossRefGoogle Scholar
  5. 5.
    Seong-Hyong Hong, Messing GL (1999) J Am Ceram Soc 82(4):867CrossRefGoogle Scholar
  6. 6.
    Kathryn L, Nagy L, Randall T, Cygan JM, Neil C (1999) Geochim Cosmochim Acta 63(16):2337CrossRefGoogle Scholar
  7. 7.
    Wang ZJ, Bi HY, Kokawa H, Zhang L, Tsaur J, Ichiki M, Maeda R (2004) J Eur Ceram Soc 24(6):1629CrossRefGoogle Scholar
  8. 8.
    Grim RE, Bradley WF, Brown G (1951) The mica clay minerals Brindley GW (ed) Mineralogical Society, London, 138Google Scholar
  9. 9.
    MacKenzie RC, Milne AA (1953) Mineral Mag 30:178Google Scholar
  10. 10.
    Guggenheim S, Chang YH, Koster van Groos AF (1987) Am Mineral 72:537Google Scholar
  11. 11.
    Udagawa S, Urabe K, Hasu H (1974) Jap Assoc Mineral Petrol Econ Geol 69:281Google Scholar
  12. 12.
    Mazzucato E, Artioli G, Gualtieri A (1999) Phys Chem Miner 26:375CrossRefGoogle Scholar
  13. 13.
    Osborn EF, Muan A (1960) Phase Equilibrium Diagrams of Oxide Systems, The American Ceramic Society and the Edouard Orton Jr. Ceramic Foundation, Columbus, Ohio Google Scholar
  14. 14.
    Carty W, Senapati U (1998) J Am Ceram Soc 81(1):3CrossRefGoogle Scholar
  15. 15.
    Bellotto M, Gualtieri A, Artioli G, Dark SM (1995) Phys Chem Miner 22:207CrossRefGoogle Scholar
  16. 16.
    Bellotto M, Gualtieri A, Artioli G, Dark SM (1995) Phys Chem Miner 22:215CrossRefGoogle Scholar
  17. 17.
    Drits VA, Tchoubar C (1990) X-ray diffraction by disordered lamellar structures, Springer-Verlag, Berlin, 233–303Google Scholar
  18. 18.
    Artioli G, Bellotto M, Gualtieri A, Pavese A (1995) Clays Clay Miner 4:438CrossRefGoogle Scholar
  19. 19.
    Rocha J, Klinowski J (1990) Phys Chem Miner 17:179CrossRefGoogle Scholar
  20. 20.
    Sanz J, Madani A, Serratosa JM, Moya JS, Aza S (1988) J Am Ceram Soc 71(10):C418CrossRefGoogle Scholar
  21. 21.
    Gualtieri A, Bellotto M (1998) Phys Chem Miner 25:442CrossRefGoogle Scholar
  22. 22.
    Klein HH, Stern WB, Weber W (1982) Schweizerische Mineralogische und Petrographische Mitteilungen 62(1):145Google Scholar
  23. 23.
    Pruett RJ, Webb HL (1993) Clays Clay Miner 41:514CrossRefGoogle Scholar
  24. 24.
    Egami T, Billinge SJL (2003) Mater Today 6(6):57CrossRefGoogle Scholar
  25. 25.
    Jeong IK, Thompson J, Proffen Th, Turner AMP, Billinge SJL (2001) J Appl Crystallogr 34(4):536CrossRefGoogle Scholar
  26. 26.
    Proffen Th, Billinge SJL (1999) J Appl Crystallogr 32(3):572CrossRefGoogle Scholar
  27. 27.
    Liang J, Hawthorne FC (1996) Can Mineral 34:115Google Scholar
  28. 28.
    Eberhart JP (1963) Bul Soc Fr Miner Cristallogr 86:213Google Scholar
  29. 29.
    Nicol AW (1964) Clays Clay Miner 12:11CrossRefGoogle Scholar
  30. 30.
    Catti M, Ferraris G, Ivaldi G (1989) Eur J Mineral 1:625CrossRefGoogle Scholar
  31. 31.
    Vassanyi I, Szabo A (1993) Mater Sci Forum 133–136:655CrossRefGoogle Scholar
  32. 32.
    Castelein O, Soulestin B, Bonnet JP, Blanchart P (2001) Ceram Int 27(5):517CrossRefGoogle Scholar
  33. 33.
    Ban T, Okada K (1992) J Am Soc 75(1):227Google Scholar
  34. 34.
    Rodriguez-Navarro C, Cultrone G, Sanchez-Navas A, Sebastian E (2003) Am Miner 88:713CrossRefGoogle Scholar
  35. 35.
    Mackenzie KJD, Brown IWM, Cardile CM, Meinhold RH (1987) J Mat Sci 22:2645CrossRefGoogle Scholar
  36. 36.
    Lee Sujeong, Kim Youn Joong, Moon Hi-Soo (1999) J Am Ceram Soc 82(10):2841CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.GEMH, ENSCILimogesFrance

Personalised recommendations