Journal of Materials Science

, Volume 41, Issue 15, pp 4892–4900 | Cite as

Sorption and diffusion of arenes through poly (ethylene-co-vinyl acetate) membranes

  • S. Anil Kumar
  • M. G. Kumaran
  • Sabu ThomasEmail author


The sorption and diffusion of aromatic hydrocarbons through poly (ethylene-co-vinyl acetate) membranes has been investigated in the temperature interval of 25–70 °C using the sorption gravimetric analysis. The carbon–carbon crosslinks are introduced by using benzoyl peroxide (BP). Diffusion through membranes containing different loading of BP was carried out. For all liquids, the equilibrium solvent uptake was influenced by the penetrant size, temperature and crosslinking density. Thermodynamic constants are estimated from the sorption measurements. The values of polymer–solvent interaction parameters obtained from the diffusion experiments have been used to calculate the molecular mass between crosslinks of the network polymer. The transport mechanism was found to follow close Fickian behavior at 28 °C, but at high temperature, mechanism deviates to anomalous mode of transport.


Natural Rubber Benzoyl Peroxide Pervaporation Crosslinking Density Intrinsic Diffusion Coefficient 


  1. 1.
    Naylor TD (1989) In: Booth C, Price C (eds) Comprehensive polymer science, vol 2. Pergamon Press, New York, p 643Google Scholar
  2. 2.
    Kumar SA, Gedam PH, Prasad VSK, Kumaran MG, Thomas S (1996) J Appl Polym Sci 60:735CrossRefGoogle Scholar
  3. 3.
    Sourirajan S (1970) Reverse osmosis. Academic Press, New YorkGoogle Scholar
  4. 4.
    Harogoppad SB, Aminabhavi TM (1991) Macromolecules 24:2598CrossRefGoogle Scholar
  5. 5.
    Mathew AP, Pakirisamy S, Kumaran MG, Thomas S (1995) Polymer 36:4935CrossRefGoogle Scholar
  6. 6.
    Mathai AE, Thomas S (1996) J Macromol Sci Part B: Phys 35:229CrossRefGoogle Scholar
  7. 7.
    Cassidy PE, Aminabhavi TM, Thompson CM (1983) Rubber Chem Technol 56:594CrossRefGoogle Scholar
  8. 8.
    Aminabhavi TM, Phayde HTS (1995) Polymer 36:1023CrossRefGoogle Scholar
  9. 9.
    Siddaramaiah S, Roopa S, Premakumar U (1998) Polymer 39:3925CrossRefGoogle Scholar
  10. 10.
    Unnikrishnan G, Thomas S (1994) Polymer 35:5504CrossRefGoogle Scholar
  11. 11.
    Kumar SA, Thomas S, Kumaran MG (1997) Polymer 38:4629CrossRefGoogle Scholar
  12. 12.
    Mathai AE, Singh RP, Thomas S (2002) J Membr Sci 202:35CrossRefGoogle Scholar
  13. 13.
    Mathew AP, Pakirisamy S, Kumaran MG, Thomas S (1995) Polymer 36:4935CrossRefGoogle Scholar
  14. 14.
    George S, Varughese KT, Thomas S (2000) Polymer 41:579CrossRefGoogle Scholar
  15. 15.
    George SC, Ninan KN, Thomas S (2000) J Appl Polym Sci 78:1280CrossRefGoogle Scholar
  16. 16.
    Chiou JS, Paul DR (1986) Polym Eng Sci 26:1218CrossRefGoogle Scholar
  17. 17.
    Vieth WR (1991) Diffusion in and through Polymers. Oxford University Press, New YorkGoogle Scholar
  18. 18.
    Aminabhavi TM, Khinnavar RS (1993) Polymer 34:1006CrossRefGoogle Scholar
  19. 19.
    Anil Kumar PV, Varughese KT, Thomas S (2002) Polym Polym Comp 10:553Google Scholar
  20. 20.
    Harogoppad SB, Aminabhavi TM (1991) Macromolecules 24:2598CrossRefGoogle Scholar
  21. 21.
    Flory PJ, Rehner J Jr (1943) J Chem Phys 11:521CrossRefGoogle Scholar
  22. 22.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, IthacaGoogle Scholar
  23. 23.
    James HM, Guth E (1947) J Chem Phys 15:669CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.School of Chemical SciencesMahatma Gandhi UniversityKottayamIndia
  2. 2.Rubber Research Institute of IndiaKottayamIndia

Personalised recommendations