Advertisement

Journal of Materials Science

, Volume 41, Issue 17, pp 5598–5601 | Cite as

Electrochemically and template-synthesized nickel nanorod arrays and nanotubes

  • Shouhong Xue
  • Chuanbao Cao
  • Hesun Zhu
Article

Abstract

Nickel nanorod arrays and nanotubes have been successfully synthesized by electrochemical deposition using a polycarbonate membrane template. The length and average diameter of nickel nanorod arrays are 5–6 µm and 400 nm, respectively. The hysteresis loops indicate that the easy axis of magnetization of nickel nanorod arrays is perpendicular to the membrane plane. By silanizing the PC membrane and increasing the initial voltage, the nickel nanotubes could also be obtained. This method offers a convenient and efficient path to synthesize metal array nanostructures.

Keywords

Anodic Aluminum Oxide Electrochemical Deposition Polycarbonate Membrane Initial Voltage Normal Hexane 

References

  1. 1.
    Cobden DH (2001) Nature 409:32CrossRefGoogle Scholar
  2. 2.
    Cui Y, Lieber CM (2001) Science 291:851CrossRefGoogle Scholar
  3. 3.
    Prinz GA (1998) Science 282:1660CrossRefGoogle Scholar
  4. 4.
    Schmid G, Chi LF (1998) Adv Mater 10:515CrossRefGoogle Scholar
  5. 5.
    Ni XM, Su SB, Yang ZP (2003) J Cryst Growth 252:612CrossRefGoogle Scholar
  6. 6.
    Jin CG, Lin WF, Jia C (2003) J Cryst Growth 258:337CrossRefGoogle Scholar
  7. 7.
    Wang F, Zhang Z, Chang Z (2002) Mater Lett 55:27CrossRefGoogle Scholar
  8. 8.
    Park SJ, Kim S, Lee S, Khim ZG (2000) J Am Chem Soc 122:8581CrossRefGoogle Scholar
  9. 9.
    Puntes VF, Krishnan KM, Alivisatos AP (2001) Science 291:2115CrossRefGoogle Scholar
  10. 10.
    Bradley JS, Tesche B, Busser W, Maase M (2000) J Am Chem Soc 122:4631CrossRefGoogle Scholar
  11. 11.
    Coydente N, Respaud M, Secocq F, Casanove MJ, Amiens C (2001) Nano Lett 1:565CrossRefGoogle Scholar
  12. 12.
    Cui ZL, Dong LF, Hao CC (2000) Mater Sci Eng A 286:205CrossRefGoogle Scholar
  13. 13.
    Chen JP, Sorensen CM, Klabunde KJ (1995) Phys Rev B 17:11527CrossRefGoogle Scholar
  14. 14.
    Glavee GN, Klabunde KJ, Sorensen CM (1993) Inorg Chem 32:474CrossRefGoogle Scholar
  15. 15.
    Sun YP, Rollins HW, Guduru R (1999) Chem Mater 11:7CrossRefGoogle Scholar
  16. 16.
    Martin CR (1998) Nature 393:346CrossRefGoogle Scholar
  17. 17.
    Parthasarathy RV, Martin CR (1994) Nature 369:298CrossRefGoogle Scholar
  18. 18.
    Hermann AM, Ramakrishnan PA, Badri V, Mardilovich P, Landuyt W (2001) Int J Hydrogen Energy. 26:1295CrossRefGoogle Scholar
  19. 19.
    Badri V, Hermann AM (2000) Int J Hydrogen Energy 25:249CrossRefGoogle Scholar
  20. 20.
    Demoustier-Champagne S, Delvaux M (2001) Mater Sci Eng C 15:269CrossRefGoogle Scholar
  21. 21.
    Tourillon G, Pontonnier L, Levy JP, Langlais V (2000) Electrochem Solid-State Lett 3(1):20 Tour1CrossRefGoogle Scholar
  22. 22.
    Tian MB (2000) Magnetic materials. Beijing, p 50Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Research Center of Materials ScienceBeijing Institute of TechnologyBeijingP.R. China

Personalised recommendations