Journal of Materials Science

, Volume 41, Issue 17, pp 5462–5466 | Cite as

Preparation of copper coated carbon nanotubes by decomposition of Cu(II)acetylacetonate in hydrogen atmosphere

  • Guo Wenli
  • Zhang Yue
  • Liang TongxiangEmail author


In this paper, copper coated carbon nanotubes (CNTs) was synthesized by decomposition of Cu(II) acetylacetonate (Cu(acac)2) in hydrogen atmosphere at 300 °C. The thickness of the copper coating was in nanoscale according to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images, and Raman spectra indicated that certain intermediate bonds were formed between copper and the template CNTs. The crystalline structure of copper and its growth orientation were determined by X-ray diffraction (XRD) and selected area electron diffraction (SAED). The copper coating on CNTs had a face-centered cubic structure and its growth orientation was parallel to \( (\bar 111) \) planes. The method developed in this paper had the advantages of simplicity in both process control and experiment equipments, so that it might provide a possibility of large-scale production.


Acac Select Area Electron Diffraction Copper Oxide Growth Orientation Hydrogen Atmosphere 


  1. 1.
    Morales AM, Liebe CM (1998) Science 279:208CrossRefGoogle Scholar
  2. 2.
    Pan ZW, Dai ZR, Wang ZL (2001) Science 291:1947CrossRefGoogle Scholar
  3. 3.
    Yao JL, Pan GP, Wang ZL (2000) Pure Appl Chem 72:221CrossRefGoogle Scholar
  4. 4.
    Hu JT, Odom TW, Liebe CM (1999) Acc Chem Res 32:435CrossRefGoogle Scholar
  5. 5.
    Sun XH, Peng HY, Tang YH, Shi WS, Wong NB, Lee CS, Lee ST, Sham TK (2001) J Appl Phys 89:6396CrossRefGoogle Scholar
  6. 6.
    Sun XH, Sammynaiken R, Naftel SJ, Tang YH, Zhang P, Kim PS, Sham TK, Fan XH, Zhang YF, Lee CS, Lee ST, Wong NB, Hu YF, Tan KH (2002) Chem Mater 14:2519CrossRefGoogle Scholar
  7. 7.
    Dahn JR et al (1995) Science 270:590CrossRefGoogle Scholar
  8. 8.
    Lisiecki I, Filankembo A, Sack-Kongehl H (1999) Phys Rev B 61:4968CrossRefGoogle Scholar
  9. 9.
    Liu Z, Bando Y (2003) Adv Mater 15:303CrossRefGoogle Scholar
  10. 10.
    Molares MET, Brötz J, Buschmann V, Dobrev D (2001) Nucl Instrum Methods B 185:192CrossRefGoogle Scholar
  11. 11.
    Molares MET, Buschmann V, Dobrev D, Neumann R (2001) Adv Mater 13:62CrossRefGoogle Scholar
  12. 12.
    Tanori J, Pileni MP (1997) Langmuir 13:639CrossRefGoogle Scholar
  13. 13.
    Pileni MP, Guilk T, Tanori J, Filankembo A, Dedieu JC (1998) Langmuir 22:7359CrossRefGoogle Scholar
  14. 14.
    Gao YH, Bando Y (2002) Nature (London) 415:599CrossRefGoogle Scholar
  15. 15.
    Li Q, Wang C (2003) Chem Phys Lett 375:525CrossRefGoogle Scholar
  16. 16.
    Wu GT, Wang CS, Zhang XB, Yang HS (1998) J Power Sources 75:175CrossRefGoogle Scholar
  17. 17.
    Gao T, Meng G, Wang Y, Sun S, Zhang L (2002) J Phys Condens Matter 14:355CrossRefGoogle Scholar
  18. 18.
    Choi HC, Shim M, Bangsaruntip S, Dai HJ (2002) J Am Chem Soc 124:9058CrossRefGoogle Scholar
  19. 19.
    Xiao J, Xie Y, Tang R, Chen M, Tian X (2001) Adv Mater 13:1887CrossRefGoogle Scholar
  20. 20.
    Figueiredo JL, Pereira MFR, Freitas MMA (1999) Carbon 37(9):1379CrossRefGoogle Scholar
  21. 21.
    Ebbsen TW, Hiura H, Bisher ME (1996) Adv Mater 8(2):55Google Scholar
  22. 22.
    Anjana Devi, Goswami J, Lakshmi R et al (1998) J Mater Res 13:687Google Scholar
  23. 23.
    Liu YQ, Liang TX (2003) J Tsinghua Univ (Sci&Tech) 43(6):808Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Institute of Nuclear Energy TechnologyTsinghua UniversityBeijingP. R. China
  2. 2.Forschungszentrum Karlsruhe GmbHInstitut fur NanotechnologieKarlsruheGermany

Personalised recommendations