Journal of Materials Science

, Volume 41, Issue 17, pp 5495–5499 | Cite as

Hydrogen embrittlement susceptibility of over aged 7010 Al-alloy

  • Bobby Kannan M.
  • V. S. RajaEmail author


Slow strain rate testing (SSRT) was carried out on over aged 7010 Al-alloy in laboratory air, glycerin and 3.5 wt.% NaCl solution with and without cathodic charging to study the hydrogen embrittlement susceptibility of the alloy in over aged condition. It was found that the over aged alloy exhibited high resistance to stress corrosion cracking (SCC) than hydrogen embrittlement (HE). The high SCC resistance is due to the modification in the grain boundary precipitate morphology and chemistry due to over aging, however it is suggested that the dislocations in the alloy are not completed annealed during over aging to arrest HE.


Stress Corrosion Crack Hydrogen Embrittlement Aged Alloy Cathodic Charge Slow Strain Rate Testing 



The authors wish to acknowledge Dr. A. K. Mukhopadhyay, Associate Director, Defence Metallurgical Research Laboratory, Hyderabad, India for providing the materials.


  1. 1.
    Bobby Kannan M, Raja VS, Raman R, Mukhopadhyay AK (2003) Corrosion 59:881CrossRefGoogle Scholar
  2. 2.
    Polmear IJ (1989) In: Light alloys: metallurgy of light metals, 2nd edn. Edward Arnold, London, p 101Google Scholar
  3. 3.
    Sarkar B, Marek M, Starke EA Jr (1981) Metall Trans 12A:1939CrossRefGoogle Scholar
  4. 4.
    Sprowls DO (1996) In: Jones RH (eds) Evaluation of stress corrosion cracking: stress corrosion cracking-material performance and evaluation. ASM, USA, p 394Google Scholar
  5. 5.
    Bobby Kannan M, Raja VS, Mukhopadhyay AK (2004) Scripta Materialia 51:1075CrossRefGoogle Scholar
  6. 6.
    Hardwick DA, Thompson AW, Bernstein IM (1983) Metall Trans 14A:2517CrossRefGoogle Scholar
  7. 7.
    Albrecht J, Thompson AW, Bernstein IM (1979) Metall Trans 10A:1759CrossRefGoogle Scholar
  8. 8.
    Nguyen D, Thompson AW, Bernstein IM (1987) Acta Metall 35:2417CrossRefGoogle Scholar
  9. 9.
    Klimowicz TF, Latanision RM (1978) Metall Trans 9A:597CrossRefGoogle Scholar
  10. 10.
    Nguyen TH, Brown BF, Foley RT (1982) Corrosion 38:319CrossRefGoogle Scholar
  11. 11.
    Haas M (2002) Grain boundary phenomena and failure of aluminium alloys, Ph.D. thesis, University of Groningen, Netherlands. University Press, Groningen, p 96Google Scholar
  12. 12.
    Ohnishi T, Higashi K (1984) J Jpn Inst Light Met 34:1850Google Scholar
  13. 13.
    Mukhopadhyay AK, Reddy GM, Prasad KS, Kamat SV, Dutta A, Mondal C (2001) In: Tiryakioglu M (ed) J.T. Staley Honorary Symposium on Al Alloys. ASM Materials Solution Conference and Exposition, Indianapolis, USA, p 63Google Scholar
  14. 14.
    Ramgopal T, Gouma PI, Frankel GS (2002) Corrosion 58:687CrossRefGoogle Scholar
  15. 15.
    Albrecht J, Thompson AW, Bernstein IM (1982) Metall Trans 13A:811CrossRefGoogle Scholar
  16. 16.
    Talianker M, Cina B (1989) Metall Trans 20A:2087CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Corrosion Science and EngineeringIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations