Advertisement

Journal of Materials Science

, Volume 41, Issue 18, pp 5966–5975 | Cite as

The relationship between the fracture toughness and grain boundary characteristics in hot-dip galvanized zinc coatings

  • G. Vincent
  • N. Bonasso
  • J. S. Lecomte
  • B. Colinet
  • B. Gay
  • C. Esling
Article

Abstract

This publication presents an experimental study on the relation between the grain boundary (GB) characteristics and the intergranular cracking resistance in a hot dip zinc coating. The cracking was studied using in situ tensile tests in a scanning electron microscope on small tensile samples of a hot dip galvanized steel sheet. In situ testing offered a series of advantages like monitoring the kinematical evolution of cracking without unloading, or making micrographs and OIM imaging on the same area of the tensile sample. The grain boundaries were classified into random and special boundaries (respectively Low angle boundaries and Coincidence site lattice—CSL boundaries). These special boundaries which account for 3.5% of the whole boundaries clearly show better cracking resistance than the random boundaries. The only special boundaries which present cracking failure are in an orientation with their normal direction close to the tensile direction, i.e. submitted to a maximum effective stress. The grain boundaries characteristics are obtained from EBSD individual orientation measurements.

Keywords

Grain Boundary Misorientation Angle Intergranular Crack Coincidence Site Lattice Zinc Coating 

References

  1. 1.
    Dunham KJ (2002) Metal Finish 100:20CrossRefGoogle Scholar
  2. 2.
    Tzimas E, Papadimitriou G (2001) Technology 145:176Google Scholar
  3. 3.
    Lazik S, Esling C, Philippe MJ, Wegria J, Dubois M (1996) TMS 28:35Google Scholar
  4. 4.
    Parisot R, Forest S, Gourgues AF, Pineau A, Mareuse D (2000) Comp Mater Sci 19:189CrossRefGoogle Scholar
  5. 5.
    Lim LC, Watanabe T (1990) Acta Metall Mater 38:2507CrossRefGoogle Scholar
  6. 6.
    Watanabe T, Tsurekawa S (1999) Acta Metall Mater 47:4171CrossRefGoogle Scholar
  7. 7.
    Watanabe T, Yamada M, Shima S, Karashima S (1979) Phil Mag A 40(5): 667CrossRefGoogle Scholar
  8. 8.
    Wang G, Zuo L, Esling C (2002) Phil Mag A 12:2499CrossRefGoogle Scholar
  9. 9.
    Beaujean I (1993) Ph.D. Thesis, University of Metz, MetzGoogle Scholar
  10. 10.
    Gaignard S, Lazik S, Lietzau J, Wegria J, Dubois M, Philippe MJ, Esling C (1999) TMS 34:147Google Scholar
  11. 11.
    Bunge HJ (1993) Texture analysis in material science, Cuvillier Verlag, GöttingenGoogle Scholar
  12. 12.
    Palumbo G, Aust KT, Lehockey EM, Erb U, Lin P (1998) Scripta Mat 38(11):1685CrossRefGoogle Scholar
  13. 13.
    Gertsman VY, Zhilyaev AP, Szpunar JA (1997) Model Simul Mater Sci Eng 5:35CrossRefGoogle Scholar
  14. 14.
    Brandon DG (1966) Acta Metall 14:1479CrossRefGoogle Scholar
  15. 15.
    Pan Y, Adams BL, Olson T, Panayotou N (1996) Acta Metall 44:4685Google Scholar
  16. 16.
    Read WT, Shockley W (1950) Phys Rev 78:275CrossRefGoogle Scholar
  17. 17.
    Bonnet R, Cousineau E, Warrington DH (1981) Acta Cryst A37:184CrossRefGoogle Scholar
  18. 18.
    Heinz A, Neumann P (1991) Acta Cryst. A47:780CrossRefGoogle Scholar
  19. 19.
    Humbert M, Wagner F, Moustafid H, Esling C (1995) J Appl Cryst 28:571CrossRefGoogle Scholar
  20. 20.
    Zuo L, Watanabe T, Esling C (1994) Z Metallkde 85:554Google Scholar
  21. 21.
    Kim T, Hong KT, Lee KS (2003) Intermetallics 11:33CrossRefGoogle Scholar
  22. 22.
    Zuo L, Esling C (1995) Scripta Metall Mater 32(6):937CrossRefGoogle Scholar
  23. 23.
    Mackenzie JK, Thomson MJ (1957) Biometrika 44:205CrossRefGoogle Scholar
  24. 24.
    Jaffrey D, Browne JD, Howard TJ (1980) Metall Trans B 11:631CrossRefGoogle Scholar
  25. 25.
    Known JQ, Demura M, Hirano T (2003) Acta Materialia 51:2505CrossRefGoogle Scholar
  26. 26.
    Lee DS, Ryoo HS, Hwang SK (2003) Mater Sci Eng A354:106CrossRefGoogle Scholar
  27. 27.
    Watanabe T, Kimura SI, Karashima S (1984) Phil Mag A 49(6):845CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • G. Vincent
    • 1
  • N. Bonasso
    • 1
  • J. S. Lecomte
    • 1
  • B. Colinet
    • 2
  • B. Gay
    • 3
  • C. Esling
    • 1
  1. 1.Laboratoire d’Etude des Textures et Application aux Matériaux, CNRS UMR 7078Université de MetzMetz Cedex 1France
  2. 2.Recherche et Développement de Cockerill SambreGroupe ArcelorLiègeBelgique
  3. 3.Umicore RechercheOlenBelgique

Personalised recommendations