Advertisement

Journal of Materials Science

, Volume 41, Issue 17, pp 5657–5665 | Cite as

Effect of corn powder as filler in radial passenger tyre tread compound

  • S. L. Agrawal
  • S. K. Mandot
  • N. Mandal
  • S. Bandyopadhyay
  • R. Mukhopadhyay
  • A. S. Deuri
  • R. Mallik
  • A. K. Bhowmick
Article

Abstract

The present context of technological scenario, requirement of developing low rolling resistance passenger radial tyres with naturally occurring environmental friendly materials is inevitable. Several studies have been reported by using silica filler in place of carbon black for improving the rolling resistance property. In the present study, an attempt has been made to investigate the effect of biodegradable Indian corn powder in tyre tread compound as filler. The effect of corn powder in gum and filled compound of both natural rubber (NR) and styrene butadiene rubber (SBR) based compound has been studied. It was found that corn powder of 200-mesh size increased thermal stability of NR compound and acted as a non-reinforcing filler. It also affected the fatigue properties and abrasion loss when the carbon black was partially replaced with corn powder. However, an improvement in the temperature build up (TBU) and tan δ at 60 °C (a representative of rolling resistance property of tyre) was observed.

Keywords

High Performance Liquid Chromatographic Carbon Black Natural Rubber Silane Coupling Agent Rolling Resistance 

Abbreviations

NR

Natural rubber

SBR

Styrene butadiene rubber

RMA #4

Natural rubber, sheet, classified as per Rubber Manufacturers Association, Malaysia

ISNR

Natural rubber, block, classified as per Indian Standard Natural Rubber

PCTP

Pentachloro pthio phenol

RPO

Rubber process oil

ZnO

Zinc oxide

6PPD

N-(1,3-Dimethyl butyl)-N′-phenyl para phenylene diamine

DPPD

N,N′-Di-phenyl para phenylene diamine

TMQ

Polymerised 2,2,4-trimethyl, 1,2-di hydro, quinoline

CTP

N-Cyclo hexyl pthio pthalimide

ASTM

American Society for Testing and Materials

MV

Mooney viscometer

MDR

Moving die rheometer

VA

Viscoanalyser

TGA

Thermo gravimetric analyser

DTG

Differential thermo gravimetric analysis

DSC

Differential scanning calorimeter

FTIR

Fourier transformed infrared spectrophotometer

SEM

Scanning electron microscope

Tq

Torque

M50%, M100%, M300%

Modulus at 50%, 100% and 300% elongation level

TS

Tensile strength

EB

Elongation at break

FTFT

Flex to fatigue test

TBU

Temperature build up

Vr

Volume fraction of insoluble rubber in swollen gel

Vr0

Volume fraction of gum rubber compound

Vrf

Volume fraction of corn filled rubber compound

φ

Volume fraction of filler

Notes

Acknowledgement

Authors would like to thank HASETRI and J.K. Tyre Management for the permission given to publish the paper.

References

  1. 1.
    Wolff S (1996) Rubber Chem Technol 69(3):325CrossRefGoogle Scholar
  2. 2.
    Wolff S (1996) Paper presented at Rubber Division, ACS Meeting, New York, April 8–11, 1996Google Scholar
  3. 3.
    Menting KH, Bertels H, Hensel M (1995) Tyre Technol Int 107Google Scholar
  4. 4.
    Bertel H, Hensel M, Menting KH, Schafer V, Umland H (1996) Tyre Technol Int 54Google Scholar
  5. 5.
    White L (1999) Eur Rubber J 181:26Google Scholar
  6. 6.
    Banerjee UK (2000) Paper presented at National Rubber Conference – RUBTECH – 2000, New Delhi, India, 28–29, November 2000Google Scholar
  7. 7.
    Blume A, Uhrlandt S (2002) Rubber World 226:30Google Scholar
  8. 8.
    Griffin GJL (ed) (1994) Chemistry and technology of biodegradable polymers. Blackie Academic and Professional, an imprint of Chapman and HallGoogle Scholar
  9. 9.
    Carraher CE, Sperling LH (eds) (1983) Polymer application of renewable materials. Plenum Publishing Corp., New YorkGoogle Scholar
  10. 10.
    Forster JF, Whistler RL, Pascall EF (eds) (1965) Starch: chemistry and technology, vol 1. Academic Press Inc., Orlando, FloridaGoogle Scholar
  11. 11.
    Whistler RL, Corbett WM (1957) In: Pigman W (ed) The carbohydrates. Academic Press Inc., Orlando, Florida, p 675Google Scholar
  12. 12.
    www.ncga-world of corn2001.htmlGoogle Scholar
  13. 13.
    News (1998) Tyre Technol Int 7Google Scholar
  14. 14.
    Challen J (2001) Tyre Technol Int 14Google Scholar
  15. 15.
    Gent AN, Hartwell JA (2003) Rubber Chem Technol 76(2):517CrossRefGoogle Scholar
  16. 16.
    Hergenrother WL, Hilton AS (2003) Rubber Chem Technol 76(4):832CrossRefGoogle Scholar
  17. 17.
    Goldsworthy WB, Dawson D (2001) Composites, fabrication to die design. Encyclopedia of polymer science and technology, IInd edn, vol 4, p 356Google Scholar
  18. 18.
    Kraus G (1963) J Appl Polymer Sci 7:861CrossRefGoogle Scholar
  19. 19.
    Agrawal SL, Mandot SK, Mandal N, Bandyopadhyay S, Mukhopadhyay R, Deuri AS, Mallik R, Bhowmick AK (2005) Prog Rubber Plastics Recycling Technol 21(3):231CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • S. L. Agrawal
    • 1
  • S. K. Mandot
    • 1
  • N. Mandal
    • 1
  • S. Bandyopadhyay
    • 1
  • R. Mukhopadhyay
    • 1
  • A. S. Deuri
    • 2
  • R. Mallik
    • 3
  • A. K. Bhowmick
    • 3
  1. 1.Hari Shankar Singhania Elastomer and Tyre Research Institute (HASETRI)KankroliIndia
  2. 2.R & D Centre, J.K. TyreKankroliIndia
  3. 3.Rubber Technology Centre, I.I.T. KharagpurKharagpurIndia

Personalised recommendations