Advertisement

Journal of Materials Science

, Volume 41, Issue 17, pp 5424–5428 | Cite as

Agglomeration control of hydroxyapatite nano-crystals grown in phase-separated microenvironments

  • Kimiyasu Sato
  • Yuji Hotta
  • Takaaki Nagaoka
  • Masaki Yasuoka
  • Koji Watari
Article

Abstract

Materials synthesis processes that require high temperatures consume large quantities of energy that generate an environmental burden. We attempted to synthesize hydroxyapatite (HAp) nano-crystals without firing or melting. “Water in oil” (W/O) emulsions were employed as microreactors for HAp formation. The surfactant-bounded water mediated HAp crystal nucleation, and HAp nano-crystallites were obtained. The obtained particles were aggregates composed of plate-like nano-crystals and monodisperse tiny crystals. Utilization of the W/O emulsions resulted in tunable nucleation frequency and the reactant provision, and yielded HAp nano-crystals with characteristic agglomeration properties.

Keywords

Organic Functional Group Nucleation Frequency Agglomeration State Size Distribution Profile Reactant Provision 

References

  1. 1.
    Elliott JC (1994) Structure and chemistry of the apatite and other calcium orthophosphates. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Aoki H, Aoki H, Kutsuno T, Li W, Niwa M (2000) J Mater Sci Mater Med 11: 67CrossRefGoogle Scholar
  3. 3.
    Watanabe Y, Moriyoshi Y, Suetsugu Y, Ikoma T, Kasama T, Hashimoto T, Yamada H, Tanaka J (2004) J Am Ceram Soc 87: 1395CrossRefGoogle Scholar
  4. 4.
    Sato K, Kogure T, Iwai H, Tanaka J (2002) J Am Ceram Soc 85: 3054CrossRefGoogle Scholar
  5. 5.
    Mann S (1996) Biomimetic materials chemistry. VCH Publishers, New YorkGoogle Scholar
  6. 6.
    Mann S (1996) In: Mann S, Webb J, Williams RJP (eds) Biomineralization: chemical and biochemical perspectives. VCH Publishers, New York, p 35Google Scholar
  7. 7.
    Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, OxfordGoogle Scholar
  8. 8.
    Adair JH, Li T, Kido T, Havey K, Moon J, Mecholsky J, Morrone A, Talham DR, Ludwig MH, Wang L (1998) Mater Sci Eng R-Rep 23: 139CrossRefGoogle Scholar
  9. 9.
    Qi L, Ma J, Cheng H, Zhao Z (1997) J Mater Sci Lett 16: 1779CrossRefGoogle Scholar
  10. 10.
    Furuzono T, Walsh D, Sato K, Sonoda K, Tanaka J (2001) J Mater Sci Lett 20: 111CrossRefGoogle Scholar
  11. 11.
    Sonoda K, Furuzono T, Walsh D, Sato K, Tanaka J (2002) Solid State Ionics 151: 321CrossRefGoogle Scholar
  12. 12.
    Phillips MJ, Darr JA, Luklinska ZB, Rehman I (2003) J Mat Sci: Mater Med 14: 875Google Scholar
  13. 13.
    Tanahashi M, Matsuda T (1997) J Biomed Mater Res 34: 305CrossRefGoogle Scholar
  14. 14.
    Sato K, Kumagai Y, Tanaka J (2000) J Biomed Mater Res 50: 16CrossRefGoogle Scholar
  15. 15.
    Sato K, Kogure T, Kumagai Y, Tanaka J (2001) J Colloid Interface Sci 240: 133CrossRefGoogle Scholar
  16. 16.
    Sato K, Kumagai Y, Ikoma T, Watari K, Tanaka J (2005) J Ceram Soc Jpn 113: 112CrossRefGoogle Scholar
  17. 17.
    Marinova KG, Alargova RG, Denkov ND, Velev OD, Petsev DN, Ivanov IB, Borwankar RP (1996) Langmuir 12: 2045CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Kimiyasu Sato
    • 1
  • Yuji Hotta
    • 1
  • Takaaki Nagaoka
    • 1
  • Masaki Yasuoka
    • 1
  • Koji Watari
    • 1
  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)NagoyaJapan

Personalised recommendations