Advertisement

Journal of Materials Science

, Volume 42, Issue 11, pp 4031–4035 | Cite as

Formation of TiO2 nanotubes by thermal decomposition of poly(vinyl alcohol)-titanium alkoxide hybrid nanofibers

  • Koji NakaneEmail author
  • Naoki Shimada
  • Takashi Ogihara
  • Nobuo Ogata
  • Shinji Yamaguchi
Article

Abstract

Anatase type TiO2 nanotubes were formed by calcination of poly(vinyl alcohol)-Ti alkoxide hybrid precursor nanofibers in air. The outer and inner diameters of the TiO2 nanotubes calcined at 500 °C for 5 h were ca. 440 nm and ca. 270 nm, respectively. The specific surface area of the TiO2 nanotubes was 38.8 m2/g, and the existence of mesopores (average pore diameter, 14.8 nm) on the nanotube wall was indicated by the nitrogen adsorption isotherm (−196 °C). The photocatalysis of the TiO2 nanotubes was superior to that of commercially available anatase type TiO2 nanoparticles.

Keywords

TiO2 Methylene Blue Photocatalysis Alkoxide TiO2 Nanotubes 

Notes

Acknowledgement

The authors thank KANBO PRAS CORPORATION, Japan, for partial financial support.

References

  1. 1.
    Doshi J, Reneker DH (1995) J Electrostatics 35:151CrossRefGoogle Scholar
  2. 2.
    Buchko CJ, Chen LC, Shen Y, Martin DC (1999) Polymer 40:7397CrossRefGoogle Scholar
  3. 3.
    Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) Comp Sci Tech 63:2223CrossRefGoogle Scholar
  4. 4.
    Ochi T (2004) Sen’i Gakkaishi 60:266 (in Japanese)CrossRefGoogle Scholar
  5. 5.
    Srinivasan G, Reneker DH (1995) Polym Int 36:195CrossRefGoogle Scholar
  6. 6.
    Nakane K, Ogihara T, Ogata N, Yamaguchi S (2005) Sen’i Gakkaishi 61:313CrossRefGoogle Scholar
  7. 7.
    Chronakis IS (2005) J Mater Proc Tech 167:283CrossRefGoogle Scholar
  8. 8.
    Li D, Xia Y (2003) Nano Lett 3:555CrossRefGoogle Scholar
  9. 9.
    Larsen G, Velarde-Ortiz R, Minchow K, Barrero A, Loscertales IG (2003) J Am Chem Soc 125:1154CrossRefGoogle Scholar
  10. 10.
    Shao C, Guan H, Liu Y, Gong J, Yu N, Yang X (2004) J Cryst Growth 267:380CrossRefGoogle Scholar
  11. 11.
    Guan H, Shao C, Liu Y, Yu N, Yang X (2004) Solid State Commun 131:107CrossRefGoogle Scholar
  12. 12.
    Kobayashi S, Hanabusa K, Hamasaki N, Kimura M, Shirai H (2000) Chem Mater 12:1523CrossRefGoogle Scholar
  13. 13.
    Kobayashi S, Hamasaki N, Suzuki M, Kimura M, Shirai H, Hanabusa K (2002) J Am Chem Soc 124:6550CrossRefGoogle Scholar
  14. 14.
    Kinbara A (1999) Thesis, Facutly of Engineering, Fukui UniversityGoogle Scholar
  15. 15.
    Nakane K, Ogihara T, Ogata N, Kurokawa Y (2003) J Mater Res 18:672CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Koji Nakane
    • 1
    Email author
  • Naoki Shimada
    • 1
  • Takashi Ogihara
    • 1
  • Nobuo Ogata
    • 1
  • Shinji Yamaguchi
    • 1
  1. 1.Department of Materials Science and Engineering, Faculty of EngineeringUniversity of FukuiFukuiJapan

Personalised recommendations