Advertisement

Journal of Materials Science

, Volume 42, Issue 10, pp 3508–3519 | Cite as

Contact damage initiation in silicon nitride in Hertzian indentation: role of microstructure

  • Guang-Yong Lin
  • Ramaswamy Lakshminarayanan
  • Dinesh K. ShettyEmail author
Article

Abstract

A bearing-grade silicon nitride with fine microstructure and a turbine-grade silicon nitride with coarse microstructure were studied with respect to the influence of their microstructures on (a) crack-growth-resistance behavior, (b) strength degradation due to Vickers indentation, and (c) crack initiation in quasi-static indentation with WC spheres. The turbine grade exhibited strong rising crack-growth resistance and less strength degradation due to Vickers indentation as compared to the bearing grade. Partial-ring or C cracks initiated in Hertzian indentation and the critical loads exhibited linear (Auerbach) variation with indenter radius above a critical value. For smaller radius, indentation plasticity preceded C-crack initiation. The bearing grade exhibited higher critical loads for C-crack initiation, but showed greater extension toward a ring crack than the turbine grade. These differences in crack initiation and growth were consistent with the differences in crack initiation and propagation toughness of the two grades. A ball-on-ball impact analysis was used to predict the critical velocities for initiating C cracks in the impact of silicon nitride surfaces with WC spheres.

Keywords

Fracture Toughness Critical Load Silicon Nitride Ball Radius Cone Crack 

Notes

Acknowledgements

Research at University of Utah was supported by a subcontract under the DARPA-AMP Cooperative Agreement No. N00014-96-2-0014 with Sunstrand Aerospace Company.

References

  1. 1.
    Jack KH (2000) Mater Sci Forum 325–326:255CrossRefGoogle Scholar
  2. 2.
    Tajima Y (1993) In: Silicon nitride ceramics, scientific and technological advances, Materials Research Society Symposium 287:189Google Scholar
  3. 3.
    Wang L, Snidle RW, Gu L (2000) Wear 246:159CrossRefGoogle Scholar
  4. 4.
    Cundill RT (1992) In: Carlsson R, Johannson T, Kahlman L (eds) 4th International Symposium on Ceramic Materials and Components for Engines, Goteborg, Sweden, 1991, Elsevier Science Publishers, Ltd, p 905Google Scholar
  5. 5.
    Kawase H, Kato K, Matsuhisa T, Mizuno T (1993) Trans ASME J Eng Gas Turbines Power 115:23CrossRefGoogle Scholar
  6. 6.
    Yoshida M, Truruzono S, Ono T, Gejima H (1994) Proc Int Gas Turbine Aeroengine Cong Expo, Paper # 94-GT-332Google Scholar
  7. 7.
    Boggs RN (1995) Design News, January 23Google Scholar
  8. 8.
    ASTM Standard C-1161-90 (1990) Standard test method for flexural strength of advanced ceramics at ambient temperature, American Society for Testing and Materials, Philadelphia, PAGoogle Scholar
  9. 9.
    Munz D, Bubsey RT, Shannon JL Jr (1980) J Test Eval 8:103CrossRefGoogle Scholar
  10. 10.
    Munz D, Bubsey RT, Srawley JE (1980) Int J Fracture 16:359CrossRefGoogle Scholar
  11. 11.
    Ramachandran N, Shetty DK (1991) J Am Ceram Soc 74:2634CrossRefGoogle Scholar
  12. 12.
    Cook RF, Lawn BR (1983) J Am Ceram Soc 66(11):C-200CrossRefGoogle Scholar
  13. 13.
    Marshall DB, Lawn BR (1979) J Mater Sci 14:2001CrossRefGoogle Scholar
  14. 14.
    Lawn BR, Evans AG, Marshall DB (1980) J Am Ceram Soc 63(9–10):574CrossRefGoogle Scholar
  15. 15.
    Krause RF Jr (1988) J Am Ceram Soc 71(5):338CrossRefGoogle Scholar
  16. 16.
    Marshall DB, Lawn BR, Chantikul P (1979) J Mater Sci 14:2225CrossRefGoogle Scholar
  17. 17.
    Chantikul P, Anstis GR, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64(9):539CrossRefGoogle Scholar
  18. 18.
    Newman Jr JC, Raju IS (1981) Eng Frac Mech 15:291CrossRefGoogle Scholar
  19. 19.
    Li CW, Yamanis J (1989) Ceram Eng Sci Proc 10:632CrossRefGoogle Scholar
  20. 20.
    Ramachandran N, Shetty DK (1993) J Mater Sci 28:6120CrossRefGoogle Scholar
  21. 21.
    Cook RF, Clarke DR (1988) Acta Metall 36(3):555CrossRefGoogle Scholar
  22. 22.
    Lawn BR (1998) J Am Ceram Soc 81:1977CrossRefGoogle Scholar
  23. 23.
    Roesler FC (1956) Proc Phys Soc London B69:55CrossRefGoogle Scholar
  24. 24.
    Evans AG, Wilshaw TR (1976) Acta Metall 24:939CrossRefGoogle Scholar
  25. 25.
    Becher PF, Sun EY, Plucknett KP, Alexander KB, Hsueh CH, Lin HT, Waters SB, Westmoreland CG, Kang ES, Hirao K, Brito ME (1998) J Am Ceram Soc 81(11):2821CrossRefGoogle Scholar
  26. 26.
    Sun EY, Becher PF, Plucknett KP, Hsueh CH, Alexander KB, Waters SB, Hirao K, Brito ME (1998) J Am Ceram Soc 81(11):2831CrossRefGoogle Scholar
  27. 27.
    Becher PF, Hwang SL, Lin HT, Tiegs TN (1994) In: Hoffmann MJ, Petzow G (eds) Tailoring of mechanical properties of Si3N4 ceramics. Kluwer Academic Publishers, Boston, pp 87–100Google Scholar
  28. 28.
    Evans AG, McMeeking RM (1986) Acta Metall 34(12):2435CrossRefGoogle Scholar
  29. 29.
    Budiansky B, Amazigo JC, Evans AG (1988) J Mech Phys Solids 36(2):167CrossRefGoogle Scholar
  30. 30.
    Becher PF, Hsueh CH, Angelini P, Tiegs TN (1988) J Am Ceram Soc 71(12):1050CrossRefGoogle Scholar
  31. 31.
    Hertz H (1896) Hertz’s Miscellaneous Papers; Chapters 5 and 6. Macmillan, London, UKGoogle Scholar
  32. 32.
    Auerbach F (1891) Ann Phys Chem 43:61CrossRefGoogle Scholar
  33. 33.
    Frank FC, Lawn BR (1967) Proc R Soc London A299:291CrossRefGoogle Scholar
  34. 34.
    Lawn BR (1993) Fracture of brittle solids, chap. 8. Cambridge University Press, p 283Google Scholar
  35. 35.
    Lee SK, Wuttiphan S, Lawn BR (1997) J Am Ceram Soc 80:2367CrossRefGoogle Scholar
  36. 36.
    Cundill RT (1997) In: Niihara K (ed) 6th International Symposium on Ceramic Materials and Components for Engines. Arita, JapanGoogle Scholar
  37. 37.
    Akimune Y, Akiba T, Ogasawara T (1995) J Mater Sci 30:1000CrossRefGoogle Scholar
  38. 38.
    Yoshida H, Nakashima T, Yoshida M, Hara Y, Shimamori T (1998) Proc Int Gas Turbine and Aeroengine Cong Expo, Paper # 98-GT-399Google Scholar
  39. 39.
    Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. p 420Google Scholar
  40. 40.
    Shockey DA, Rowcliffe DJ, Dao KC, Seaman L (1990) J Am Ceram Soc 73:1613CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Guang-Yong Lin
    • 1
  • Ramaswamy Lakshminarayanan
    • 1
  • Dinesh K. Shetty
    • 1
    Email author
  1. 1.University of UtahSalt Lake CityUSA

Personalised recommendations