Journal of Materials Science

, Volume 42, Issue 11, pp 4009–4017 | Cite as

Improved visible-light responsive photocatalytic activity of N and Si co-doped titanias

  • Hirotaka Ozaki
  • Shinji IwamotoEmail author
  • Masashi Inoue


Thermal reaction of titanium tetraisopropoxide and tetraethyl orthosilicate in 1,4-butanediol afforded nanocrystalline silica-modified titanias having large surface area and superior thermal stability. In this study, the thus-obtained silica-modified titanias were treated in an NH3 flow at high temperatures, and their physical and photocatalytic properties were investigated. Compared with NH3-treated TiO2 without silica modification, the NH3-treated silica-modified titanias showed a stronger absorption in the visible region (400–500 nm) and had a larger peak at 396 eV in the N 1s XPS spectrum. These results indicate that a larger amount of nitrogen was stably doped in the silica-modified titania. The obtained products exhibited a high photocatalytic activity for degradation of Rhodamine B and decomposition of acetaldehyde under visible light irradiation.


Photocatalytic Activity Visible Light Irradiation High Photocatalytic Activity Visible Light Region Photocatalytic Decomposition 



This study was supported by a Grant-in-Aid for Scientific Research (No. 16510085) from Ministry of Education, Culture, Sports, Science and Technology, Japan, and by the Kansai Research Foundation for Technology Promotion. One of the authors, S. I., thanks Prof. B. Ohtani for valuable discussions.

Supplementary material

10853_2006_236_MOESM1_ESM.doc (62 kb)
ESM1 (DOC 62 kb)


  1. 1.
    Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C 1:1CrossRefGoogle Scholar
  2. 2.
    Hoffman MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69CrossRefGoogle Scholar
  3. 3.
    Serpone N, Lawless D (1994) Langmuir 10:643CrossRefGoogle Scholar
  4. 4.
    Anpo M (1997) Catal Surv Jpn 1:169CrossRefGoogle Scholar
  5. 5.
    Klosek S, Raftery D (2001) J Phys Chem B 105:2815CrossRefGoogle Scholar
  6. 6.
    Sakata Y, Yamamoto T, Okazaki T, Imamura H, Tsuchiya S (1998) Chem Lett 1253Google Scholar
  7. 7.
    Sato S (1986) Chem Phys Lett 123:126CrossRefGoogle Scholar
  8. 8.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269CrossRefGoogle Scholar
  9. 9.
    Lindgren T, Mwabora JM, Avendaño E, Jonsson J, Hoel A, Granqvist C-G, Lindquist S-E (2003) J Phys Chem B 107:5709CrossRefGoogle Scholar
  10. 10.
    Irie H, Watanabe Y, Hashimoto K (2003) J Phys Chem B 107:5483CrossRefGoogle Scholar
  11. 11.
    Ohno T, Mitsui T, Matsumura M (2003) Chem Lett 364Google Scholar
  12. 12.
    Luo H, Takata T, Lee Y, Zhao J, Domen K, Yan Y (2004) Chem Mater 16:846CrossRefGoogle Scholar
  13. 13.
    Hattori A, Tada H (2001) J Sol–Gel Sci Technol 22:47CrossRefGoogle Scholar
  14. 14.
    Iwamoto S, Tanakulrungsank W, Inoue M, Kagawa K, Praserthdam P (2000) J Mater Sci Lett 19:1439CrossRefGoogle Scholar
  15. 15.
    Iwamoto Sh, Iwamoto Se, Inoue M, Yoshida H, Tanaka T, Kagawa K (2005) Chem Mater 17:650CrossRefGoogle Scholar
  16. 16.
    Ozaki H, Iwamoto S, Inoue M (2005) Chem Lett 34:1082CrossRefGoogle Scholar
  17. 17.
    Iwamoto S, Saito K, Inoue M, Kagawa K (2001) Nano Lett 1:417CrossRefGoogle Scholar
  18. 18.
    Miyauchi M, Ikezawa A, Tobimatsu H, Irie H, Hashimoto K (2004) Phys Chem Chem Phys 6:865CrossRefGoogle Scholar
  19. 19.
    Liu H, Gao L (2004) J Am Ceram Soc 87:1582CrossRefGoogle Scholar
  20. 20.
    Sakatani Y, Ando H, Okusako K, Koike H, Nunoshige J, Takata T, Kondo JN, Hara M, Domen K (2004) J Mater Res 19:2100CrossRefGoogle Scholar
  21. 21.
    Torimoto T, Fox RJ III, Fox MA (1996) J Electrochem Soc 143:3712CrossRefGoogle Scholar
  22. 22.
    Guillot J, Jouaiti A, Imhoff L, Domenichini B, Heintz O, Zerkout S, Mosser A, Bourgeois S (2002) Surf Interface Anal 33:577CrossRefGoogle Scholar
  23. 23.
    Makino Y, Nose M, Tanaka T, Misawa M, Tanimoto A, Nakai T, Kato K, Nogi K (1998) Surf Coat Technol 98:934CrossRefGoogle Scholar
  24. 24.
    Shinn ND, Tsang KL (1991) J Vac Sci Technol A 9:1558CrossRefGoogle Scholar
  25. 25.
    Saha NC, Tompkins HG (1992) J Appl Phys 72:3072CrossRefGoogle Scholar
  26. 26.
    Muilenberg GE (1979) In: Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corporation, Minnesota, p 40Google Scholar
  27. 27.
    H Höchst, Bringans RD, Steiner P, Wolf TH (1982) Phys Rev B 25:7183CrossRefGoogle Scholar
  28. 28.
    Vasile MJ, Emerson AB, Baiocchi FA (1990) J Vac Sci Technol A 8:99CrossRefGoogle Scholar
  29. 29.
    Miller AE, Moulder J (1985) J Vac Sci Technol A 3:2415CrossRefGoogle Scholar
  30. 30.
    Bertóti I, Mohai M, Sullivan JL, Saied SO (1995) Appl Surf Sci 84:357CrossRefGoogle Scholar
  31. 31.
    Wu T, Liu G, Zhao J, Hidaka H, Serpone N (1998) J Phys Chem B 102:5845CrossRefGoogle Scholar
  32. 32.
    Vinodgopal K, Kamat PV (1992) J Phys Chem 96:5053CrossRefGoogle Scholar
  33. 33.
    Ikeda S, Sugiyama N, Murakami S, Kominami H, Kera Y, Noguchi H, Uosaki K, Torimoto T, Ohtani B (2003) Phys Chem Chem Phys 5:778CrossRefGoogle Scholar
  34. 34.
    Sauer ML, Ollis DF (1996) J Catal 158:570CrossRefGoogle Scholar
  35. 35.
    Nimlos MR, Wolfrum EJ, Brewer ML, Fennell JA, Bintner G (1996) Environ Sci Technol 30:3102CrossRefGoogle Scholar
  36. 36.
    Muggli DS, Lowery KH, Falconer JL (1998) J Catal 180:111CrossRefGoogle Scholar
  37. 37.
    Xu J-H, Shiraishi F (1999) J Chem Technol Biotechnol 74:1096CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Energy and Hydrocarbon Chemistry, Graduate School of EngineeringKyoto UniversityKatsura, KyotoJapan

Personalised recommendations