Advertisement

Journal of Materials Science

, Volume 41, Issue 21, pp 6991–7004 | Cite as

Modeling bamboo as a functionally graded material: lessons for the analysis of affordable materials

  • Emílio Carlos Nelli Silva
  • Matthew C. Walters
  • Glaucio H. Paulino
Article

Abstract

Natural fibers are promising for engineering applications due to their low cost. They are abundantly available in tropical and subtropical regions of the world, and they can be employed as construction materials. Among natural fibers, bamboo has been widely used for housing construction around the world. Bamboo is an optimized composite that exploits the concept of Functionally Graded Material (FGM). Biological structures such as bamboo have complicated microstructural shapes and material distribution, and thus the use of numerical methods such as the finite element method, and multiscale methods such as homogenization, can help to further understanding of the mechanical behavior of these materials. The objective of this work is to explore techniques such as the finite element method and homogenization to investigate the structural behavior of bamboo. The finite element formulation uses graded finite elements to capture the varying material distribution through the bamboo wall. To observe bamboo behavior under applied loads, simulations are conducted under multiple considerations such as a spatially varying Young’s modulus, an averaged Young’s modulus, and orthotropic constitutive properties obtained from homogenization theory. The homogenization procedure uses effective, axisymmetric properties estimated from the spatially varying bamboo composite. Three-dimensional models of bamboo cells were built and simulated under tension, torsion, and bending load cases.

Keywords

Hollow Cylinder Functionally Grade Material Effective Property Multiscale Method Homogenization Procedure 

Notes

Acknowledgements

We gratefully acknowledge the U.S. National Science Foundation through the project CMS #0303492 “Inter-Americas Collaboration in Materials Research and Education” (P.I., Professor W. Soboyejo, Princeton University).

References

  1. 1.
    Nogata F, Takahashi H (1995) Compos Eng 5:743CrossRefGoogle Scholar
  2. 2.
    Janssen JJA (1995) Building with bamboo. Intermediate Technology Publications, LondonCrossRefGoogle Scholar
  3. 3.
    Jayanetti DL, Follett PR (1998) Bamboo in construction. Trada, UKGoogle Scholar
  4. 4.
    Chung KF, Yu WK (2002) Eng Struct 24:429CrossRefGoogle Scholar
  5. 5.
    Ghavami K (1995) Cement Concrete Compos 17:281CrossRefGoogle Scholar
  6. 6.
    Okubo K, Fujii T, Yamamoto Y (2004) Compos Part A 35:377CrossRefGoogle Scholar
  7. 7.
    Ge XC, Li XH, Meng YZ (2004) J Appl Polymer Sci 93:1804CrossRefGoogle Scholar
  8. 8.
    Ghavami K (2004) Structure and Properties of Bamboo. PowerPoint presentationGoogle Scholar
  9. 9.
    Amada S, Munekata T, Nagase Y, Ichikawa Y, Kirigai A, Yang ZF (1996) J Compos Mat 30:800CrossRefGoogle Scholar
  10. 10.
    Amada S, Ichikawa Y, Munekata T, Shimizu H (1997) Compos Part B 28:13CrossRefGoogle Scholar
  11. 11.
    Ray AK, Das SK, Mondal S, Ramachandrarao P (2004) J Mater Sci 39:1055CrossRefGoogle Scholar
  12. 12.
    Amada S, Ichikawa Y, Munekata T, Nagase Y, Shimizu H (1997) Compos Part B 28:13CrossRefGoogle Scholar
  13. 13.
    Ghavami K, Rodrigues CS, Paciornik S (2003) Asian J Civil Eng 4:1Google Scholar
  14. 14.
    Janssen JJA (1991) Mechanical properties of bamboo. Kluwer Academic PublishersGoogle Scholar
  15. 15.
    Suresh S, Mortensen A (1988) Fundamentals of functionally graded materials. IOM Communications, LondonGoogle Scholar
  16. 16.
    Paulino GH, Jin Z-H, Dodds RH Jr (2003) In: Karihaloo B, Knauss WG (eds) Comprehensive structural integrity, vol 2. Elsevier, p 607Google Scholar
  17. 17.
    Lakkad SC, Patel JM (1980) Fibre Sci Tech 14:319CrossRefGoogle Scholar
  18. 18.
    Lo TY, Cui HZ, Leung HC (2004) Mater Lett 58:2595CrossRefGoogle Scholar
  19. 19.
    Li SH, Zeng QY, Xiao YL, Fu SY, Zhou BL (1995) Mat Sci Eng C 3:125CrossRefGoogle Scholar
  20. 20.
    Amada S, Lakes RS (1997) J Mater Sci 32:2693CrossRefGoogle Scholar
  21. 21.
    Amada S, Untao S (2001) Compos Part B 32:451CrossRefGoogle Scholar
  22. 22.
    Nugroho N, Ando N (2001) J Wood Sci 47:237CrossRefGoogle Scholar
  23. 23.
    Lee AWC, Bai XS, Bangi AP (1997) Forest Prod J 47:74Google Scholar
  24. 24.
    Amada S, Terauchi Y (2001) In: Trumble K, Bowman K, Reimanis I, Sampath S (eds) Proceedings of the 6th International Symposium of Functionally Graded Materials, Estes Park, Colorado, Sep. 2000. The American Ceramic Society, p 763Google Scholar
  25. 25.
    Bai XS, Lee AWC, Thompson LL, Rosowsky DV (1999) Wood Fiber Sci 31:403Google Scholar
  26. 26.
    Bathe K-J (1996) Finite element procedures. Prentice-Hall, Englewood CliffsGoogle Scholar
  27. 27.
    Cook RD, Malkus DS, Plesha ME, Witt RJ (2002) Concepts and applications of finite element analysis 4th edn. John Wiley and Sons, USAGoogle Scholar
  28. 28.
    Sanchez-Palencia E (1980) Non-homogeneous media and vibration. Theory lecture notes in physics 127. Springer, BerlinGoogle Scholar
  29. 29.
    Santare MH, Lambros J (2000) ASME J Appl Mech 67:819CrossRefGoogle Scholar
  30. 30.
    Kim J-H, Paulino GH (2002) ASME J Appl Mech 69:502CrossRefGoogle Scholar
  31. 31.
    Yin HM, Sun LZ, Paulino GH (2004) Acta Mater 52:3535CrossRefGoogle Scholar
  32. 32.
    Nemat-Nasser S, Hori M (1993) Micromechanics: overall properties of heterogeneous materials. North-Holland, AmsterdamCrossRefGoogle Scholar
  33. 33.
    Kalamkarov AL, Kolpakov AG (1997) Analysis, design and optimization of composite structures. John Wiley and Sons, Chichester, EnglandGoogle Scholar
  34. 34.
    Guedes JM, Kikuchi N (1990) Comp Meth Appl Mech Eng 83:143CrossRefGoogle Scholar
  35. 35.
    Rooney F, Ferrari M (2001) Int J Solids Struct 38:413CrossRefGoogle Scholar
  36. 36.
    Pindera MJ, Freed AD, Arnold SM (1993) Int J Solids Struct 30:1213CrossRefGoogle Scholar
  37. 37.
    Walters MC, Paulino GH, Dodds RH Jr (2004) Int J Solids Struct 41:1081CrossRefGoogle Scholar
  38. 38.
    Gere JM, Timoshenko SP (1990) Mechanics of Materials 3rd edn. PWS Publishing, BostonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Emílio Carlos Nelli Silva
    • 1
  • Matthew C. Walters
    • 2
  • Glaucio H. Paulino
    • 2
  1. 1.Department of Mechatronics and Mechanical Systems EngineeringEscola Politécnica da Universidade de São PauloSão PauloBrazil
  2. 2.Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana-Champaign, Newmark LaboratoryUrbanaUSA

Personalised recommendations