Journal of Materials Science

, Volume 42, Issue 9, pp 3230–3237 | Cite as

The effect of ormosil nano-particles on the toughness of a polyester resin

  • David A. Jesson
  • Paul A. Smith
  • John N. Hay
  • John F.  Watts
Article

Abstract

Organic–inorganic hybrid nano-particles have been synthesized via a modified Stöber method. Nano-particles have been prepared from silica precursors with different organic functionalities. Methyl, ethyl, vinyl and phenyl modified silicas have been synthesized with a view to using these particles as modifiers for polymers and polymer matrix composites. Nano-composites have been produced using polyester as a matrix. The effect of the nano-particles on the toughness of the polyester has been investigated and it is shown that the incorporation of nano-particles leads to an improvement in toughness. For the methyl, ethyl and vinyl ormosils (organically modified silicas) the improvement is minor. The phenyl ormosil gives a greater improvement. This is attributed to different toughening mechanisms.

References

  1. 1.
    Rowe EH, Siebert AR, Drake RS (1970) Modern Plastics 47:110Google Scholar
  2. 2.
    Bascom WD, Ting RY, Moulton RJ, Riew CK, Siebert AR (1981) J Mat Sci 16:2657CrossRefGoogle Scholar
  3. 3.
    Spanoudakis J, Young RJ (1984) J Mat Sci 19:473CrossRefGoogle Scholar
  4. 4.
    Spanoudakis J, Young RJ (1984) J Mat Sci 19:487CrossRefGoogle Scholar
  5. 5.
    Kinloch AJ, Maxwell DL, Young RJ (1985) J Mat Sci 20:4169CrossRefGoogle Scholar
  6. 6.
    Nakamura Y, Yamaguchi M, Kitayama A, Okubo M, Matsumoto T (1991) Polymer 32:2221CrossRefGoogle Scholar
  7. 7.
    Nakamura Y, Yamaguchi M, Okubo M, Matsumoto T (1992) Polymer 33:3415CrossRefGoogle Scholar
  8. 8.
    Lee J-J, Ogin SL, Smith PA (1995) In: Martin RH (ed) Composite materials: fatigue and fracture—5th vol, ASTM STP 1230. American Society for Testing and Materials, Philadelphia p 38Google Scholar
  9. 9.
    Imanaka M, Takeuchi Y, Nakamura Y, Nishimura A, Iida T (2001) Int J Adhes Adhes 21:389CrossRefGoogle Scholar
  10. 10.
    Kinloch AJ, Taylor AC (2002) J Mat Sci 37:433CrossRefGoogle Scholar
  11. 11.
    Bescher E, Mackenzie JD (1998) Mat Sci Eng C6:145Google Scholar
  12. 12.
    Lebeau B, Sanchez C (1999) Curr Opin Solid State Mater Sci 4:11CrossRefGoogle Scholar
  13. 13.
    Bekiari V (2004) Proceedings of the 11th European conference on composite materials, May 2004, Rhodes, Greece, C020Google Scholar
  14. 14.
    Arkhireeva A, Hay JN (2003) J Mat Chem 13:3122CrossRefGoogle Scholar
  15. 15.
    Arkhireeva A, Hay JN, Manzano M (2005) Chem Mat 17:875CrossRefGoogle Scholar
  16. 16.
    Jesson DA, Abel M-L, Arkhireeva A, Hay JN, Smith PA, Watts JF (2004) Surf Interface Anal 36:765CrossRefGoogle Scholar
  17. 17.
    Jesson DA, Arkhireeva A, Hay JN, Smith PA, Watts JF (2004) In: Proceedings of the 11th European conference on composite materials, May 2004, Rhodes, Greece, C086Google Scholar
  18. 18.
    Jesson DA, Abel M-L, Hay JN, Smith PA, Watts JF (2006) Langmuir 22:5144CrossRefGoogle Scholar
  19. 19.
    Rothon RN, Hancock M (1995) In: Particulate-filled composites. Longman Group Ltd., London, pp 1–45Google Scholar
  20. 20.
    Lange FF (1970) Philos Mag 22:983Google Scholar
  21. 21.
    Huang Y, Kinloch AJ (1992) J Mat Sci 27:2763CrossRefGoogle Scholar
  22. 22.
    Bagheri R, Pearson RA (2000) Polymer 41:269CrossRefGoogle Scholar
  23. 23.
    Pearson RA, Yee AF (1991) J Mat Sci 26:3828CrossRefGoogle Scholar
  24. 24.
    Shieu FS (1997) Polymer 38:3135CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • David A. Jesson
    • 1
  • Paul A. Smith
    • 1
  • John N. Hay
    • 2
  • John F.  Watts
    • 1
  1. 1.UniS Materials Institute, School of EngineeringUniversity of SurreyGuildford, SurreyUK
  2. 2.UniS Materials Institute, School of Biomedical and Molecular SciencesUniversity of SurreyGuildford, SurreyUK

Personalised recommendations